
Quantized 1D-CNN for a Low-power PDM-to-PCM

Conversion in TinyML KWS Applications

Paola Vitolo*, Gian Domenico Licciardo*, Anna Chiara Amendola*, Luigi Di Benedetto*,

Rosalba Liguori*, Alfredo Rubino*, and Danilo Pau**

Email: {pvitolo, gdlicciardo,ldibenedetto,rliguori,arubino}@unisa.it a.amendola28@studenti.unisa.it danilo.pau@st.com

* Department of Industrial Engineering, University of Salerno, Fisciano (SA), Italy

** System Research and Applications, STMicroelectronics, Agrate Brianza (MI), Italy

Abstract—This paper proposes a novel low-power HW

accelerator for audio PDM-to-PCM conversion based on

artificial neural network. The system processes samples from a

digital MEMS microphone and converts them in PCM format

by using a 1-Dimensional Convolutional Neural Network (1D-

CNN). The model has been quantized to reduce the

computational complexity while preserving its Signal-to-Noise

Ratio (SNR) and the HW accelerator has been designed to

minimize the physical resources. The SNR achieved is 41.56 dB

while the prototyping of the design on a Xilinx Artix-7 FPGA

shows a dynamic power consumption of 1 mW and a utilization

of 606 LUTs and 410 FFs. These results enable the proposed

system to be the first step of a tiny low-power end-to-end neural

network-based Keyword Spotting (KWS) system.

Keywords— PDM-to-PCM conversion, neural network,

keywork spotting, FPGA, low power

I. INTRODUCTION

With the rapid spread of smartphones, digital assistants,
tablets and other smart devices, the use of voice has become a
common method of interacting with technology. The report in
[1] shows that the smart speaker market was worth
approximately USD 7.1 billion in 2020 with an expected
growth rate of around 17% over the period 2020-2025. Voice
user interface is based on Automatic Speech Recognition
(ASR), which has increasingly used Artificial Intelligence
(AI) and, in particular, Deep Learning (DL) over the past
decade [2]. However, DL requires a high computational effort
and memory access operations, while battery-powered smart
devices have stringent constrains in terms of power
consumption and area. Therefore, DL-based speech
recognition systems are usually performed by using cloud
resources, which, however, introduce issues related to service
availability and bandwidth. In this regard, KWS, which
exploits edge computing, is a possible solution. It is a tiny
always-on system, enough energy-saving to be deployed to
edge devices, devoted to the detection of some wake words,
which then activates the much more energy-hungry function
blocks in the cloud to accomplish speech recognition. Digital
Micro-Electrical-Mechanical System (MEMS) microphones
are best suited in smart applications due to their extremely low
cost, noise robustness, and compactness compared to analog
alternatives, which instead require an external analogue to
digital converters (ADCs) and amplifiers, resulting in greater
bulk and cost [3]. The output signals from digital MEMS
microphones are encoded with Pulse Density Modulation
(PDM) by using a sigma-delta oversampling ADC, which
consists of a one-bit quantizer in the frequency range of GHz.
PDM signals must be converted to an easier to manipulate
Pulse Code Modulation (PCM) encoding to interface with
traditional audio processing systems. PCM uses sampling
frequencies in the kHz range with a bit depth ranging from 8
to 32 bits. Therefore, PDM-to-PCM conversion requires

downsampling and alias-rejection filtering operations, which
are challenging due to high values of the decimation factor.
Computationally efficient decimation filters are based on
Cascaded-Integrator-Comb (CIC) filters since they do not
require multipliers and memory for the filter coefficients [4].
However, CIC filters show a poor cut-off and need to be
compensated with more complex Finite Impulse Response
(FIR) filters to suppress aliasing [4], [5]. Traditional FIR filter
designs are based on windowing, optimization methods, and
approximation via truncation of impulse response [6].
Emerging alternative designs use DL methods, exploiting the
capabilities of Neural Networks (NNs) to be universal
approximators of even complex and non-linear functional
relationships [7]-[9]. In [7] the authors propose a FIR filter
design based on a single-layer NN trained with the aim of
minimizing the magnitude response. NN-based filter response
is improved in [8] by initializing weight values and inserting
additional factors into the error function to make the priority
of enhancing passband, transition, or stopband performance
flexible. In [9] a generative adversarial network (GAN) is
suggested to design various FIR filters (e.g., low pass, band
pass, high pass filter) with any cut-off frequency using the
ideal time-domain filter function as the input to the generator
of the GAN. However, existing NN-based approaches do not
investigate the design of decimation filters, which is essential
in PDM-to-PCM conversion as they determine the quality of
the signals passed from MEMSs to audio processing systems,
and hence are fundamentals for realizing compact tinyML
KWS systems.

This work proposes a novel PDM-to-PCM HW converter
based on a tiny 1D-CNN, which, for the first time in the
literature, includes a decimation filter, and exploits a
quantization scheme to achieve a good trade-off between the
number of physical resources and the SNR. The converter has
been devised to enable the system to be joined with a low-
power DL-based TinyML KWS application, e.g. [10],
realizing an end-to-end KWS system that takes as input the
MEMS microphone output and outputs the probability that a
given command is present.

Although quantized, the proposed system achieves a SNR
of 41.56 dB while it shows a dynamic power consumption of
1 mW and a utilization of 606 LUTs and 410 FFs when
implemented on a Xilinx Artix-7 FPGA.

II. THE PROPOSED DESIGN

As shown in Fig. 1, the proposed PDM-to-PCM converter
consists of a 1D-CNN model, which has been chosen because
it has fewer network parameters and, consequently, requires
less memory than fully connected (FC) layers. Furthermore,
convolutional layers are well suited for implementation
through an iterative architecture, resulting in a smaller

occupied area with an acceptable increase in latency [11]-[17].
Moreover, the CNN stride can be used for decimation.

We have considered as input a PDM signal with a
sampling rate of 2.048 MHz, which is a usual output sampling
rate of digital MEMS microphones [18], and as output a PCM
signal with a sampling rate of 16 kHz and a bit depth of 8 bits.
This output is suitable as an input for a TinyML KWS system
that can be integrated into a MicroController Unit (MCU). An
example of these systems is the quantized system for audio
wake words available, already trained, in [10]. It is composed
of a Mel-Frequency Cepstral Coefficient (MFCC) feature
extraction block and a Separable Depthwise 2D CNN. As
reported in [10], this system achieves an accuracy of 92% over
twelve classes.

A. Model

As shown in Fig. 1, the 1D-CNN input window is
composed of W1 = 2,048,000 samples, corresponding to 1
second. Each sample is encoded with 1 bit, consistently with
PDM. The model consists of two convolutional layers
(CONV), with 1 channel, same padding, and tanh function (1)
as activation function. The kernel sizes are 64 and 23 for
CONV1 and CONV2, respectively. The stride of CONV1 has
been set to 64 while the stride of CONV2 is 2. Therefore,
CONV1 performs a decimation by a factor of 64 with a
consequent output shape of 2,048,000/64 = 32,000, while
CONV2 decimates by 2 and its output shape is 32,000 / 2 =

16,000, with an overall decimation factor of 64×2 = 128. The
output of CONV1 and CONV2 are encoded with 8 bits.

()
–

x x

x x

e e
y tanh x

e e

−

−
= =

+
 (1)

B. Dataset

A custom dataset has been used for training and evaluating
the proposed model. Since the target application is KWS, the
dataset has been created using as labels an extract of PCM
values from Google Speech Commands Dataset (GSCD) [19]
and as features the corresponding PDM values. The GSCD
consists of 105,829 utterances of 35 words. Each utterance
duration is 1 s (or less) and each sampling data is encoded as
16-bit PCM value at 16 kHz rate. In this work, we have
considered 11 of 12 classes selected in [10]. As can be seen in
Table I, they are composed of 10 command words and 1
unknown class that contains words not belonging to the above
10 classes. The features corresponding to the PCM utterances
have been obtained through the Delta Sigma Toolbox [20] in
Matlab, setting an order of sigma delta ADC of 4 and an
OverSampling Ratio (OSR) of 128.

C. Training and Evaluation

To evaluate the proposed system, a traditional CIC-based
decimation filter has been designed in Matlab following the
filtering chain presented in [21]. The resulting block diagram
of the system and the relative magnitude response are shown
in Fig. 2.

A custom loss function, Fast-Fourier-Transform Mean
Absolute Error (FFT-MAE), has been created with the aim of
approximating the magnitude response of the desired
decimation filter presented in Fig. 2. The function returns the
mean absolute error between the FFT of model outputs and
the FFT of the corresponding labels.

The proposed 1D-CNN-based filter has been modeled and
trained using TensorFlow (TF) [22] framework.

Fig. 2. Block diagram of traditional filtering chain with an input sampling rate of 2.048 MHz and an output sampling rate of 16 kHz for PDM signals generated

by a fourth-order sigma-delta ADC.

Fig. 1. Schema of the proposed 1D-CNN based decimation filtering system.

TABLE I. NUMBER OF RECORDINGS OF EACH WORD OF THE

DATASET CREATED

Word Down Up Left Right Yes No Go Stop Off On Unk

Number

Of

Utterances

40 40 40 40 40 40 40 40 40 40 40

Subsequently, the weights, biases and activations of the TF
model have been quantized to 8 bits using QKeras [23]
framework, and the quantized model has been fine tuned. The
custom dataset has been divided into training (80%),
validation (10%), and test (10%) datasets. The number of
epochs has been set to 150. To evaluate the model, FFT-MAE
and MAE have been calculated on the test dataset, achieving
0.19 and 0.054, respectively. The SNR achieved at a
frequency of 1 kHz is 41.56 dB, which is about 13% lower
than the theoretical maximum SNR with a bit depth of 8 bits.
These results represent a good trade-off between the number
of employed physical resources and the accuracy of the output
signals for KWS applications. Indeed, the proposed filter has
been used as input block of the tinyML KWS system, already
trained, available in [10]. In particular, the MFCCs have been
calculated from the PCM outputs of our system and they have
been sent to the KWS model, achieving an accuracy of 89%
using our dataset.

Fig. 3 shows an output example of the proposed model,
represented in the time and frequency domain, and the
resulting MAE and FFT_MAE, respectively. Table II reports
the memory for storing the parameters and the number of
operators required by the proposed model and by the

traditional CIC-based filter of Fig. 2. Although the number of
adders required by our proposal is slightly greater than the
traditional filter, the multipliers and memory are an order of
magnitude lower, resulting in lower computational
complexity and resources. Consequently, our system is more
suitable for HW implementation in contexts with limited
resources, such as in KWS applications at edge devices.

III. HARDWARE ARCHITECTURE

The HW architecture of the proposed system is
schematized in Fig. 4a. It is composed of two main blocks: a
Control Unit (CU), consisting of a Finite State Machine

(FSM) which generates the control signals for managing the
flow of data, and a Core, which recursively implements all the
layers of the network. As shown in Fig. 4a, the Core consists
of a Processing Element (PE) which performs all the necessary
operations, a glue logic to properly route the signals, and
memory elements to store the NN parameters (FIFO1 and
FIFO2) and partial results (BFIFO1), and to buffer the
incoming data (SIPO_IN). SIPO_IN, BFIFO1, FIFO1 and
FIFO2 store 8, 23, 65 and 24 bytes, respectively. During
startup, the network parameters (weights and biases) of
CONV1 and CONV2 must be loaded into the corresponding
FIFOs. Subsequently, the CU configures the FIFOs as circular
buffers for the rest of the time. BFIFO1 is set as shifter register
when it must be written while it is a circular buffer when it

Fig. 4. Block diagram of: (a) the HW design of the proposed 1D-CNN based

decimation filter; (b) the processing element.

Fig. 3. Time Domain (left) and frequency domain (right) representations of
an audio signal “Down”. The target value is represented at the top while the

output of the proposed model is shown at the bottom.

TABLE II. MEMORY FOR PARAMETERS AND OPERATORS

REQUIRED BY THE PROPOSED SYSTEM AND CIC-BASED FILTER

ADDs per

window

MULTs per

window

Parameters

[Bytes]

CIC-based

Filter
4,064,000 2,016,000 252

Proposed

System
4,544,000 368,000 89

TABLE III. FPGA RESULTS AND COMPARISONS

 CIC-

based

Filter

Proposed

System

D
es

ig
n

S
p

ec
if

ic
at

io
n
 Input Freq. [MHz] 2.048 2.048

Output Freq. [kHz] 16 16

OSR 128 128

Clk Freq. [MHz] 83.33 83.33

LUTs 744 606

FFs 812 410

DSPs 1 0

Dyn. Power [mW] 7 1

must be read. As shown in Fig. 4b, the PE consists of a
multiplier, an adder, and a register to store the output. The
arithmetic coding is 15-bit fixed point (4.11) to account for the
increase in bit depth during the convolutions. The system can
take an input sample each 27 clock cycles and provides an
output after 91 or 28 clock cycles, depending on whether
padding is required.

IV. FPGA IMPLEMENTATION RESULTS

The proposed HW design has been implemented on a
Xilinx Artix-7 (xc7a35tfgg484-1) FPGA by using Xilinx
Vivado Design Suite. To evaluate our design, we have
implemented the traditional filter design of Fig. 2 on the same
FPGA using the Xilinx LogiCORE IP CIC compiler core [24]
and the Xilinx LogiCORE IP FIR compiler [25], with the aim
of comparing the two designs. The clock frequency has been
set at 83.33 MHz, which ensures a real-time processing. As
reported in Table III, although the number of LUTs occupied
by our proposal is 606, slightly less than the alternative, the
number of FFs results about 43% lower than the traditional
design while not using DSPs. In addition, the dynamic power
consumption of the proposed filtering system is 1 mW, which
is 7 times lower than its counterpart. Consequently, our
custom design overcomes the traditional filter design by
requiring fewer physical resources. These results enable the
system to be combined with a low-power DL-based TinyML
KWS application, creating an end-to-end KWS system that
can be deployed to the edge.

V. CONCLUSIONS

This paper proposes a new decimation filter for audio
PDM-to-PCM conversion by using a 1D-CNN. A custom loss
function has been realized with the aim of minimizing the
magnitude response and a custom dataset based on GSCD has
been created. The proposed NN-based filter has been modeled
with TensorFlow and 8-bit quantized with QKeras. The
proposed filtering has been accelerated with a custom HW
design, which exploits an iterative architecture to reduce the
required physical resources. The FPGA implementation
results overcome the traditional filtering design in terms of
number of mapped physical resources and prove that the
proposed system can be the first step towards a CNN-based
end-to-end KWS deployable to the edge.

REFERENCES

[1] “Smart Speaker Market with COVID-19 Impact Analysis by IVA

(Alexa, Google Assistant, Siri, DuerOS, Ali Genie), Component
(Hardware (Speaker Driver, Connectivity IC, Processor, Audio IC,
Memory, Power IC, Microphone) and Software), Application, and
Region - Global Forecast to 2025.” [Online]. Available:
https://www.researchandmarkets.com/reports/5116500/smart-speaker-
market-with-covid-19-impact.

[2] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, “Speech
Recognition Using Deep Neural Networks: A Systematic Review,”
IEEE Access, vol. 7, pp. 19143–19165, 2019, doi:
10.1109/ACCESS.2019.2896880.

[3] E. Zwyssig, M. Lincoln, and S. Renals, “A digital microphone array
for distant speech recognition,” in ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings,
pp. 5106–5109, 2010, doi: 10.1109/ICASSP.2010.5495040.

[4] B. P. Stosic, “Improved Classes of CIC Filter Functions: Design and
Analysis of the Quantized-Coefficient Errors,” 2021 56th Int. Sci.
Conf. Information, Commun. Energy Syst. Technol., pp. 65–68, 2021,
doi: 10.1109/ICEST52640.2021.9483471.

[5] E. B. Hogenauer, “An Economical Class of Digital Filters for
Decimation and Interpolation,” IEEE Trans. Acoust., vol. 29, no. 2, pp.
155–162, 1981, doi: 10.1109/TASSP.1981.1163535.

[6] J. Proakis and D. Manolakis, Digital Signal Processing: Principles,
Algorithms, and Applications, 4th ed. Prentice Hall, 2007.

[7] K. Pachori and A. Mishra, “Design of FIR digital filters using
ADALINE neural network,” Proc. - 4th Int. Conf. Comput. Intell.
Commun. Networks, CICN 2012, no. 3, pp. 800–803, 2012, doi:
10.1109/CICN.2012.93.

[8] D. A. Alwahab, D. R. Zaghar, and S. Laki, “FIR Filter Design Based
Neural Network,” 2018 11th Int. Symp. Commun. Syst. Networks
Digit. Signal Process. CSNDSP 2018, no. July, pp. 1–4, 2018, doi:
10.1109/CSNDSP.2018.8471878.

[9] M.-S. Koh, “Learnable Linear Phase FIR Filter Designs Using a
Generative Adversarial Network,” pp. 1–8, 2021, doi:
10.1109/icspcs53099.2021.9660300.

[10] MLCommons, “Pre-Trained Audio Wakeword Models.”
https://github.com/mlcommons/tiny/tree/v0.5/v0.5/training/keyword_
spotting/trained_models.

[11] A. De Vita et al., “A Partially Binarized Hybrid Neural Network
System for Low-Power and Resource Constrained Human Activity
Recognition,” in IEEE Trans. Circuits and Syst. I: Reg. Papers, vol. 67,
no. 11, pp. 3893-3904, Nov. 2020.

[12] A. De Vita et al., “Low-Power HWAccelerator for AI Edge-Computing
in Human Activity Recognition Systems,” in Proc. 2020 IEEE Int.
Conf. Artif. Intell. Circuits Syst. (AICAS), pp. 291–295, 2020.

[13] A. De Vita et al., “Low Power Tiny Binary Neural Network with
improved accuracy in Human Recognition Systems,” 2020 23rd
Euromicro Conference on DSD, pp. 309-315, 2020.

[14] G. D. Licciardo, C. Cappetta, L. Di Benedetto, A. Rubino , R. Liguori,
“Multiplier-Less Stream Processor for 2D Filtering in Visual Search
Applications,” in IEEE Trans. Circuits Syst. Video Technol., vol. 28,
no. 1, pp. 267–272, Jan. 2018.

[15] G. D. Licciardo, C. Cappetta, L. Di Benedetto, M. Vigliar, “Weighted
Partitioning for Fast Multiplierless Multiple-Constant Convolution
Circuit,” in IEEE Trans. Circuits Syst. II Express Briefs, vol. 64, no. 1,
pp. 66–70, Jan. 2017.

[16] G. D. Licciardo and M. Costagliola, "An H.264 Encoder for Real Time
Video Processing Designed for SPEAr Customizable System-on-Chip
Family," 2007 IEEE International Conference on Signal Processing
and Communications, Dubai, pp. 824-827, 2007.

[17] P. Vitolo, G. D. Licciardo, L. di Benedetto, R. Liguori, A. Rubino and
D. Pau, "Low-Power Anomaly Detection and Classification System
based on a Partially Binarized Autoencoder for In-Sensor Computing,"
2021 28th IEEE International Conference on Electronics, Circuits, and
Systems (ICECS), pp. 1-5, 2021.

[18] STMicroelectronics, “MEMS audio sensor omnidirectional digital
microphone for industrial applications.” IMP34DT05 - Rev 4 - June
2021.

[19] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition,” 2018, arXiv: 1804.03209. [Online]. Available:
http://arxiv.org/abs/1804.03209.

[20] R. Schreier, “Delta Sigma Toolbox,” MATLAB Cent. File Exch., 2022,
[Online]. Available:
https://www.mathworks.com/matlabcentral/fileexchange/19-delta-
sigma-toolbox.

[21] B. Da Silva, L. Segers, A. Braeken, K. Steenhaut, and A. Touhafi,
“Design exploration and performance strategies towards power-
efficient FPGA-Based architectures for sound source localization,” J.
Sensors, vol. 2019, 2019, doi: 10.1155/2019/5761235.

[22] “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, [Online]. Available: https://www.tensorflow.org/.

[23] “QKeras,” [Online]. Available: https://github.com/google/qkeras.

[24] Xilinx, “Xilinx LogiCORE IP CIC Compiler.” DS845 June 22, 2011.

[25] Xilinx, “Xilinx LogiCORE IP FIR Compiler.” PG149 Jan 21, 2021.

