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Abstract—This paper proposes a novel low-power HW 

accelerator for audio PDM-to-PCM conversion based on 

artificial neural network. The system processes samples from a 

digital MEMS microphone and converts them in PCM format 

by using a 1-Dimensional Convolutional Neural Network (1D-

CNN). The model has been quantized to reduce the 

computational complexity while preserving its Signal-to-Noise 

Ratio (SNR) and the HW accelerator has been designed to 

minimize the physical resources. The SNR achieved is 41.56 dB 

while the prototyping of the design on a Xilinx Artix-7 FPGA 

shows a dynamic power consumption of 1 mW and a utilization 

of 606 LUTs and 410 FFs. These results enable the proposed 

system to be the first step of a tiny low-power end-to-end neural 

network-based Keyword Spotting (KWS) system.  
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I. INTRODUCTION 

With the rapid spread of smartphones, digital assistants, 
tablets and other smart devices, the use of voice has become a 
common method of interacting with technology. The report in 
[1] shows that the smart speaker market was worth 
approximately USD 7.1 billion in 2020 with an expected 
growth rate of around 17% over the period 2020-2025. Voice 
user interface is based on Automatic Speech Recognition 
(ASR), which has increasingly used Artificial Intelligence 
(AI) and, in particular, Deep Learning (DL) over the past 
decade [2]. However, DL requires a high computational effort 
and memory access operations, while battery-powered smart 
devices have stringent constrains in terms of power 
consumption and area. Therefore, DL-based speech 
recognition systems are usually performed by using cloud 
resources, which, however, introduce issues related to service 
availability and bandwidth. In this regard, KWS, which 
exploits edge computing, is a possible solution. It is a tiny 
always-on system, enough energy-saving to be deployed to 
edge devices, devoted to the detection of some wake words, 
which then activates the much more energy-hungry function 
blocks in the cloud to accomplish speech recognition. Digital 
Micro-Electrical-Mechanical System (MEMS) microphones 
are best suited in smart applications due to their extremely low 
cost, noise robustness, and compactness compared to analog 
alternatives, which instead require an external analogue to 
digital converters (ADCs) and amplifiers, resulting in greater 
bulk and cost [3]. The output signals from digital MEMS 
microphones are encoded with Pulse Density Modulation 
(PDM) by using a sigma-delta oversampling ADC, which 
consists of a one-bit quantizer in the frequency range of GHz. 
PDM signals must be converted to an easier to manipulate 
Pulse Code Modulation (PCM) encoding to interface with 
traditional audio processing systems. PCM uses sampling 
frequencies in the kHz range with a bit depth ranging from 8 
to 32 bits. Therefore, PDM-to-PCM conversion requires 

downsampling and alias-rejection filtering operations, which 
are challenging due to high values of the decimation factor. 
Computationally efficient decimation filters are based on 
Cascaded-Integrator-Comb (CIC) filters since they do not 
require multipliers and memory for the filter coefficients [4]. 
However, CIC filters show a poor cut-off and need to be 
compensated with more complex Finite Impulse Response 
(FIR) filters to suppress aliasing [4], [5]. Traditional FIR filter 
designs are based on windowing, optimization methods, and 
approximation via truncation of impulse response [6]. 
Emerging alternative designs use DL methods, exploiting the 
capabilities of Neural Networks (NNs) to be universal 
approximators of even complex and non-linear functional 
relationships [7]-[9]. In [7] the authors propose a FIR filter 
design based on a single-layer NN trained with the aim of 
minimizing the magnitude response. NN-based filter response 
is improved in [8] by initializing weight values and inserting 
additional factors into the error function to make the priority 
of enhancing passband, transition, or stopband performance 
flexible. In [9] a generative adversarial network (GAN) is 
suggested to design various FIR filters (e.g., low pass, band 
pass, high pass filter) with any cut-off frequency using the 
ideal time-domain filter function as the input to the generator 
of the GAN. However, existing NN-based approaches do not 
investigate the design of decimation filters, which is essential 
in PDM-to-PCM conversion as they determine the quality of 
the signals passed from MEMSs to audio processing systems, 
and hence are fundamentals for realizing compact tinyML 
KWS systems.   

This work proposes a novel PDM-to-PCM HW converter 
based on a tiny 1D-CNN, which, for the first time in the 
literature, includes a decimation filter, and exploits a 
quantization scheme to achieve a good trade-off between the 
number of physical resources and the SNR. The converter has 
been devised to enable the system to be joined with a low-
power DL-based TinyML KWS application, e.g. [10], 
realizing an end-to-end KWS system that takes as input the 
MEMS microphone output and outputs the probability that a 
given command is present. 

Although quantized, the proposed system achieves a SNR 
of 41.56 dB while it shows a dynamic power consumption of 
1 mW and a utilization of 606 LUTs and 410 FFs when 
implemented on a Xilinx Artix-7 FPGA.  

II. THE PROPOSED DESIGN 

As shown in Fig. 1, the proposed PDM-to-PCM converter 
consists of a 1D-CNN model, which has been chosen because 
it has fewer network parameters and, consequently, requires 
less memory than fully connected (FC) layers. Furthermore, 
convolutional layers are well suited for implementation 
through an iterative architecture, resulting in a smaller 



occupied area with an acceptable increase in latency [11]-[17]. 
Moreover, the CNN stride can be used for decimation.  

We have considered as input a PDM signal with a 
sampling rate of 2.048 MHz, which is a usual output sampling 
rate of digital MEMS microphones [18], and as output a PCM 
signal with a sampling rate of 16 kHz and a bit depth of 8 bits. 
This output is suitable as an input for a TinyML KWS system 
that can be integrated into a MicroController Unit (MCU). An 
example of these systems is the quantized system for audio 
wake words available, already trained, in [10]. It is composed 
of a Mel-Frequency Cepstral Coefficient (MFCC) feature 
extraction block and a Separable Depthwise 2D CNN. As 
reported in [10], this system achieves an accuracy of 92% over 
twelve classes. 

A. Model 

As shown in Fig. 1, the 1D-CNN input window is 
composed of W1 = 2,048,000 samples, corresponding to 1 
second. Each sample is encoded with 1 bit, consistently with 
PDM. The model consists of two convolutional layers 
(CONV), with 1 channel, same padding, and tanh function (1) 
as activation function. The kernel sizes are 64 and 23 for 
CONV1 and CONV2, respectively. The stride of CONV1 has 
been set to 64 while the stride of CONV2 is 2. Therefore, 
CONV1 performs a decimation by a factor of 64 with a 
consequent output shape of 2,048,000/64 = 32,000, while 
CONV2 decimates by 2 and its output shape is 32,000 / 2 = 

16,000, with an overall decimation factor of 64×2 = 128. The 
output of CONV1 and CONV2 are encoded with 8 bits. 
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B. Dataset 

A custom dataset has been used for training and evaluating 
the proposed model. Since the target application is KWS, the 
dataset has been created using as labels an extract of PCM 
values from Google Speech Commands Dataset (GSCD) [19] 
and as features the corresponding PDM values. The GSCD 
consists of 105,829 utterances of 35 words.  Each utterance 
duration is 1 s (or less) and each sampling data is encoded as 
16-bit PCM value at 16 kHz rate. In this work, we have 
considered 11 of 12 classes selected in [10]. As can be seen in 
Table I, they are composed of 10 command words and 1 
unknown class that contains words not belonging to the above 
10 classes. The features corresponding to the PCM utterances 
have been obtained through the Delta Sigma Toolbox [20] in 
Matlab, setting an order of sigma delta ADC of 4 and an 
OverSampling Ratio (OSR) of 128. 

C. Training and Evaluation 

To evaluate the proposed system, a traditional CIC-based 
decimation filter has been designed in Matlab following the 
filtering chain presented in [21]. The resulting block diagram 
of the system and the relative magnitude response are shown 
in Fig. 2. 

A custom loss function, Fast-Fourier-Transform Mean 
Absolute Error (FFT-MAE), has been created with the aim of 
approximating the magnitude response of the desired 
decimation filter presented in Fig. 2. The function returns the 
mean absolute error between the FFT of model outputs and 
the FFT of the corresponding labels. 

The proposed 1D-CNN-based filter has been modeled and 
trained using TensorFlow (TF) [22] framework. 

 

 

 
 

 
Fig. 2. Block diagram of traditional filtering chain with an input sampling rate of 2.048 MHz and an output sampling rate of 16 kHz for PDM signals generated 

by a fourth-order sigma-delta ADC.  

 

 

 

Fig. 1. Schema of the proposed 1D-CNN based decimation filtering system.  

 
 

TABLE I.  NUMBER OF RECORDINGS OF EACH WORD OF THE 

DATASET CREATED 

Word Down Up Left Right Yes No Go Stop Off On Unk 

Number 

Of 

Utterances 

40 40 40 40 40 40 40 40 40 40 40 

 



Subsequently, the weights, biases and activations of the TF 
model have been quantized to 8 bits using QKeras [23] 
framework, and the quantized model has been fine tuned. The 
custom dataset has been divided into training (80%), 
validation (10%), and test (10%) datasets. The number of 
epochs has been set to 150. To evaluate the model, FFT-MAE 
and MAE have been calculated on the test dataset, achieving 
0.19 and 0.054, respectively. The SNR achieved at a 
frequency of 1 kHz is 41.56 dB, which is about 13% lower 
than the theoretical maximum SNR with a bit depth of 8 bits. 
These results represent a good trade-off between the number 
of employed physical resources and the accuracy of the output 
signals for KWS applications. Indeed, the proposed filter has 
been used as input block of the tinyML KWS system, already 
trained, available in [10]. In particular, the MFCCs have been 
calculated from the PCM outputs of our system and they have 
been sent to the KWS model, achieving an accuracy of 89% 
using our dataset. 

Fig. 3 shows an output example of the proposed model, 
represented in the time and frequency domain, and the 
resulting MAE and FFT_MAE, respectively. Table II reports 
the memory for storing the parameters and the number of 
operators required by the proposed model and by the 

traditional CIC-based filter of Fig. 2. Although the number of 
adders required by our proposal is slightly greater than the 
traditional filter, the multipliers and memory are an order of 
magnitude lower, resulting in lower computational 
complexity and resources. Consequently, our system is more 
suitable for HW implementation in contexts with limited 
resources, such as in KWS applications at edge devices. 

III. HARDWARE ARCHITECTURE 

The HW architecture of the proposed system is 
schematized in Fig. 4a. It is composed of two main blocks: a 
Control Unit (CU), consisting of a Finite State Machine 

(FSM) which generates the control signals for managing the 
flow of data, and a Core, which recursively implements all the 
layers of the network. As shown in Fig. 4a, the Core consists 
of a Processing Element (PE) which performs all the necessary 
operations, a glue logic to properly route the signals, and 
memory elements to store the NN parameters (FIFO1 and 
FIFO2) and partial results (BFIFO1), and to buffer the 
incoming data (SIPO_IN). SIPO_IN, BFIFO1, FIFO1 and 
FIFO2 store 8, 23, 65 and 24 bytes, respectively. During 
startup, the network parameters (weights and biases) of 
CONV1 and CONV2 must be loaded into the corresponding 
FIFOs. Subsequently, the CU configures the FIFOs as circular 
buffers for the rest of the time. BFIFO1 is set as shifter register 
when it must be written while it is a circular buffer when it 

 

 
Fig. 4. Block diagram of: (a) the HW design of the proposed 1D-CNN based 

decimation filter; (b) the processing element. 

 

 

 

Fig. 3. Time Domain (left) and frequency domain (right) representations of 
an audio signal “Down”. The target value is represented at the top while the 

output of the proposed model is shown at the bottom.  

 

TABLE II.  MEMORY FOR PARAMETERS AND OPERATORS 

REQUIRED BY THE PROPOSED SYSTEM AND CIC-BASED FILTER 

 
ADDs per 

window 

MULTs per 

window 

Parameters 

[Bytes] 

CIC-based 

Filter  
4,064,000 2,016,000 252 

Proposed 

System 
4,544,000 368,000 89 

 

TABLE III.  FPGA RESULTS AND COMPARISONS 

 CIC-

based 

Filter 

Proposed 

System 

D
es

ig
n

  

S
p

ec
if

ic
at

io
n
 Input Freq. [MHz] 2.048 2.048 

Output Freq. [kHz] 16 16 

OSR 128 128 

Clk Freq. [MHz] 83.33 83.33 

LUTs 744 606 

FFs 812 410 

DSPs 1 0 

Dyn. Power [mW] 7 1 

 



must be read. As shown in Fig. 4b, the PE consists of a 
multiplier, an adder, and a register to store the output. The 
arithmetic coding is 15-bit fixed point (4.11) to account for the 
increase in bit depth during the convolutions. The system can 
take an input sample each 27 clock cycles and provides an 
output after 91 or 28 clock cycles, depending on whether 
padding is required. 

IV. FPGA IMPLEMENTATION RESULTS 

The proposed HW design has been implemented on a 
Xilinx Artix-7 (xc7a35tfgg484-1) FPGA by using Xilinx 
Vivado Design Suite. To evaluate our design, we have 
implemented the traditional filter design of Fig. 2 on the same 
FPGA using the Xilinx LogiCORE IP CIC compiler core [24] 
and the Xilinx LogiCORE IP FIR compiler [25], with the aim 
of comparing the two designs. The clock frequency has been 
set at 83.33 MHz, which ensures a real-time processing. As 
reported in Table III, although the number of LUTs occupied 
by our proposal is 606, slightly less than the alternative, the 
number of FFs results about 43% lower than the traditional 
design while not using DSPs. In addition, the dynamic power 
consumption of the proposed filtering system is 1 mW, which 
is 7 times lower than its counterpart. Consequently, our 
custom design overcomes the traditional filter design by 
requiring fewer physical resources. These results enable the 
system to be combined with a low-power DL-based TinyML 
KWS application, creating an end-to-end KWS system that 
can be deployed to the edge. 

V. CONCLUSIONS 

This paper proposes a new decimation filter for audio 
PDM-to-PCM conversion by using a 1D-CNN. A custom loss 
function has been realized with the aim of minimizing the 
magnitude response and a custom dataset based on GSCD has 
been created. The proposed NN-based filter has been modeled 
with TensorFlow and 8-bit quantized with QKeras. The 
proposed filtering has been accelerated with a custom HW 
design, which exploits an iterative architecture to reduce the 
required physical resources. The FPGA implementation 
results overcome the traditional filtering design in terms of 
number of mapped physical resources and prove that the 
proposed system can be the first step towards a CNN-based 
end-to-end KWS deployable to the edge. 
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