351 research outputs found

    HEQuant: Marrying Homomorphic Encryption and Quantization for Communication-Efficient Private Inference

    Full text link
    Secure two-party computation with homomorphic encryption (HE) protects data privacy with a formal security guarantee but suffers from high communication overhead. While previous works, e.g., Cheetah, Iron, etc, have proposed efficient HE-based protocols for different neural network (NN) operations, they still assume high precision, e.g., fixed point 37 bit, for the NN operations and ignore NNs' native robustness against quantization error. In this paper, we propose HEQuant, which features low-precision-quantization-aware optimization for the HE-based protocols. We observe the benefit of a naive combination of quantization and HE quickly saturates as bit precision goes down. Hence, to further improve communication efficiency, we propose a series of optimizations, including an intra-coefficient packing algorithm and a quantization-aware tiling algorithm, to simultaneously reduce the number and precision of the transferred data. Compared with prior-art HE-based protocols, e.g., CrypTFlow2, Cheetah, Iron, etc, HEQuant achieves 3.523.4×3.5\sim 23.4\times communication reduction and 3.09.3×3.0\sim 9.3\times latency reduction. Meanwhile, when compared with prior-art network optimization frameworks, e.g., SENet, SNL, etc, HEQuant also achieves 3.13.6×3.1\sim 3.6\times communication reduction

    Experimental investigation on permeability and mechanical deformation of coal containing gas under load

    Get PDF
    Coalbed effective permeability is widely used as a primary index to evaluate gas-drainage effect in CBM exploitation field. However, it seems to be difficult to obtain by the reason of dynamic change in close relationship with crustal stress, methane pressure, porosity, and adsorption. Due to their dissimilar adsorption properties and tectonic deformation degrees, different types of coal containing gas have various stress-strain and gas seepage curves. The paper presents the experimental investigations of the dynamic relationship between coal permeability and deformation under load. In this work, stress-strain and permeability investigations were performed using anthracite lump with a vitrinite reflectance of about 3.24% at various pressures and temperatures. The permeability (including the initial, minimum, and maximum) decreased with increasing temperature. At a constant confining pressure, the strains in different directions almost all increased with increasing axial stress and decreased with increasing pore methane pressure during the prefracture stage. At a constant pore pressure, the compression strength of the coal specimens increased approximately linearly during the prefracture stage and sharply decreased during the postfracture stage, while the permeability decreased rapidly and then increased slowly during the prefracture and remained stable during the postfracture stage. The permeability of the coal specimens mainly depended on the inner fissures. The permeability was greater during the postfracture than that during the prefracture stage. At the same temperature, the gas seepage curve of each coal specimen could be divided into three sections: decreasing, increasing, and constant sections. The necessary time for the permeability to reach a steady state increased as the confining and pore pressures increased. At high confining pressures (i.e., 6 MPa and 8 MPa), no significant differences between the methane seepage velocities of the specimens were evident, and their seepage curves were similar to prefracture. However, clear differences were observable at the postfracture stage. The seepage abilities of the coal specimens were more sensitive to stress than temperature in the same condition

    Breaking Data Silos: Cross-Domain Learning for Multi-Agent Perception from Independent Private Sources

    Full text link
    The diverse agents in multi-agent perception systems may be from different companies. Each company might use the identical classic neural network architecture based encoder for feature extraction. However, the data source to train the various agents is independent and private in each company, leading to the Distribution Gap of different private data for training distinct agents in multi-agent perception system. The data silos by the above Distribution Gap could result in a significant performance decline in multi-agent perception. In this paper, we thoroughly examine the impact of the distribution gap on existing multi-agent perception systems. To break the data silos, we introduce the Feature Distribution-aware Aggregation (FDA) framework for cross-domain learning to mitigate the above Distribution Gap in multi-agent perception. FDA comprises two key components: Learnable Feature Compensation Module and Distribution-aware Statistical Consistency Module, both aimed at enhancing intermediate features to minimize the distribution gap among multi-agent features. Intensive experiments on the public OPV2V and V2XSet datasets underscore FDA's effectiveness in point cloud-based 3D object detection, presenting it as an invaluable augmentation to existing multi-agent perception systems.Comment: Accepted by the 2024 IEEE International Conference on Robotics and Automation (ICRA

    Bridging the Domain Gap for Multi-Agent Perception

    Full text link
    Existing multi-agent perception algorithms usually select to share deep neural features extracted from raw sensing data between agents, achieving a trade-off between accuracy and communication bandwidth limit. However, these methods assume all agents have identical neural networks, which might not be practical in the real world. The transmitted features can have a large domain gap when the models differ, leading to a dramatic performance drop in multi-agent perception. In this paper, we propose the first lightweight framework to bridge such domain gaps for multi-agent perception, which can be a plug-in module for most existing systems while maintaining confidentiality. Our framework consists of a learnable feature resizer to align features in multiple dimensions and a sparse cross-domain transformer for domain adaption. Extensive experiments on the public multi-agent perception dataset V2XSet have demonstrated that our method can effectively bridge the gap for features from different domains and outperform other baseline methods significantly by at least 8% for point-cloud-based 3D object detection.Comment: Accepted by ICRA2023.Code: https://github.com/DerrickXuNu/MPD

    S2R-ViT for Multi-Agent Cooperative Perception: Bridging the Gap from Simulation to Reality

    Full text link
    Due to the lack of enough real multi-agent data and time-consuming of labeling, existing multi-agent cooperative perception algorithms usually select the simulated sensor data for training and validating. However, the perception performance is degraded when these simulation-trained models are deployed to the real world, due to the significant domain gap between the simulated and real data. In this paper, we propose the first Simulation-to-Reality transfer learning framework for multi-agent cooperative perception using a novel Vision Transformer, named as S2R-ViT, which considers both the Deployment Gap and Feature Gap between simulated and real data. We investigate the effects of these two types of domain gaps and propose a novel uncertainty-aware vision transformer to effectively relief the Deployment Gap and an agent-based feature adaptation module with inter-agent and ego-agent discriminators to reduce the Feature Gap. Our intensive experiments on the public multi-agent cooperative perception datasets OPV2V and V2V4Real demonstrate that the proposed S2R-ViT can effectively bridge the gap from simulation to reality and outperform other methods significantly for point cloud-based 3D object detection.Comment: submit the latest one, accepted by the 2024 IEEE International Conference on Robotics and Automation (ICRA

    Domain Adaptation based Enhanced Detection for Autonomous Driving in Foggy and Rainy Weather

    Full text link
    Typically, object detection methods for autonomous driving that rely on supervised learning make the assumption of a consistent feature distribution between the training and testing data, however such assumption may fail in different weather conditions. Due to the domain gap, a detection model trained under clear weather may not perform well in foggy and rainy conditions. Overcoming detection bottlenecks in foggy and rainy weather is a real challenge for autonomous vehicles deployed in the wild. To bridge the domain gap and improve the performance of object detectionin foggy and rainy weather, this paper presents a novel framework for domain-adaptive object detection. The adaptations at both the image-level and object-level are intended to minimize the differences in image style and object appearance between domains. Furthermore, in order to improve the model's performance on challenging examples, we introduce a novel adversarial gradient reversal layer that conducts adversarial mining on difficult instances in addition to domain adaptation. Additionally, we suggest generating an auxiliary domain through data augmentation to enforce a new domain-level metric regularization. Experimental findings on public V2V benchmark exhibit a substantial enhancement in object detection specifically for foggy and rainy driving scenarios.Comment: only change the title of this pape

    In vivo analysis of Caenorhabditis elegans noncoding RNA promoter motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Noncoding RNAs (ncRNAs) play important roles in a variety of cellular processes. Characterizing the transcriptional activity of ncRNA promoters is therefore a critical step toward understanding the complex cellular roles of ncRNAs.</p> <p>Results</p> <p>Here we present an <it>in vivo </it>transcriptional analysis of three <it>C. elegans </it>ncRNA upstream motifs (UM1-3). Transcriptional activity of all three motifs has been demonstrated, and mutational analysis revealed differential contributions of different parts of each motif. We showed that upstream motif 1 (UM1) can drive the expression of green fluorescent protein (GFP), and utilized this for detailed analysis of temporal and spatial expression patterns of 5 SL2 RNAs. Upstream motifs 2 and 3 do not drive GFP expression, and termination at consecutive T runs suggests transcription by RNA polymerase III. The UM2 sequence resembles the tRNA promoter, and is actually embedded within its own short-lived, primary transcript. This is a structure which is also found at a few plant and yeast loci, and may indicate an evolutionarily very old dicistronic transcription pattern in which a tRNA serves as a promoter for an adjacent snoRNA.</p> <p>Conclusion</p> <p>The study has demonstrated that the three upstream motifs UM1-3 have promoter activity. The UM1 sequence can drive expression of GFP, which allows for the use of UM1::GFP fusion constructs to study temporal-spatial expression patterns of UM1 ncRNA loci. The UM1 loci appear to act in concert with other upstream sequences, whereas the transcriptional activities of the UM2 and UM3 are confined to the motifs themselves.</p

    Domain Adaptive Object Detection for Autonomous Driving under Foggy Weather

    Full text link
    Most object detection methods for autonomous driving usually assume a consistent feature distribution between training and testing data, which is not always the case when weathers differ significantly. The object detection model trained under clear weather might not be effective enough in foggy weather because of the domain gap. This paper proposes a novel domain adaptive object detection framework for autonomous driving under foggy weather. Our method leverages both image-level and object-level adaptation to diminish the domain discrepancy in image style and object appearance. To further enhance the model's capabilities under challenging samples, we also come up with a new adversarial gradient reversal layer to perform adversarial mining for the hard examples together with domain adaptation. Moreover, we propose to generate an auxiliary domain by data augmentation to enforce a new domain-level metric regularization. Experimental results on public benchmarks show the effectiveness and accuracy of the proposed method. The code is available at https://github.com/jinlong17/DA-Detect.Comment: Accepted by WACV2023. Code is available at https://github.com/jinlong17/DA-Detec
    corecore