59 research outputs found

    Evaluating the Quality of Research into a Single Prognostic Biomarker: A Systematic Review and Meta-analysis of 83 Studies of C-Reactive Protein in Stable Coronary Artery Disease

    Get PDF
    Background Systematic evaluations of the quality of research on a single prognostic biomarker are rare. We sought to evaluate the quality of prognostic research evidence for the association of C-reactive protein (CRP) with fatal and nonfatal events among patients with stable coronary disease. Methods and Findings We searched MEDLINE (1966 to 2009) and EMBASE (1980 to 2009) and selected prospective studies of patients with stable coronary disease, reporting a relative risk for the association of CRP with death and nonfatal cardiovascular events. We included 83 studies, reporting 61,684 patients and 6,485 outcome events. No study reported a prespecified statistical analysis protocol; only two studies reported the time elapsed (in months or years) between initial presentation of symptomatic coronary disease and inclusion in the study. Studies reported a median of seven items (of 17) from the REMARK reporting guidelines, with no evidence of change over time. The pooled relative risk for the top versus bottom third of CRP distribution was 1.97 (95% confidence interval [CI] 1.78–2.17), with substantial heterogeneity (I2 = 79.5). Only 13 studies adjusted for conventional risk factors (age, sex, smoking, obesity, diabetes, and low-density lipoprotein [LDL] cholesterol) and these had a relative risk of 1.65 (95% CI 1.39–1.96), I2 = 33.7. Studies reported ten different ways of comparing CRP values, with weaker relative risks for those based on continuous measures. Adjusting for publication bias (for which there was strong evidence, Egger's p<0.001) using a validated method reduced the relative risk to 1.19 (95% CI 1.13–1.25). Only two studies reported a measure of discrimination (c-statistic). In 20 studies the detection rate for subsequent events could be calculated and was 31% for a 10% false positive rate, and the calculated pooled c-statistic was 0.61 (0.57–0.66). Conclusion Multiple types of reporting bias, and publication bias, make the magnitude of any independent association between CRP and prognosis among patients with stable coronary disease sufficiently uncertain that no clinical practice recommendations can be made. Publication of prespecified statistical analytic protocols and prospective registration of studies, among other measures, might help improve the quality of prognostic biomarker research

    Predominant Functional Expression of Kv1.3 by Activated Microglia of the Hippocampus after Status epilepticus

    Get PDF
    BACKGROUND:Growing evidence indicates that the functional state of microglial cells differs according to the pathological conditions that trigger their activation. In particular, activated microglial cells can express sets of Kv subunits which sustain delayed rectifying potassium currents (Kdr) and modulate differently microglia proliferation and ability to release mediators. We recently reported that hippocampal microglia is in a particular activation state after a status epilepticus (SE) and the present study aimed at identifying which of the Kv channels are functionally expressed by microglia in this model. METHODOLOGY/PRINCIPAL FINDINGS:SE was induced by systemic injection of kainate in CX3CR1(eGFP/+) mice and whole cell recordings of fluorescent microglia were performed in acute hippocampal slices prepared 48 h after SE. Microglia expressed Kdr currents which were characterized by a potential of half-maximal activation near -25 mV, prominent steady-state and cumulative inactivations. Kdr currents were almost abolished by the broad spectrum antagonist 4-Aminopyridine (1 mM). In contrast, tetraethylammonium (TEA) at a concentration of 1 mM, known to block Kv3.1, Kv1.1 and 1.2 subunits, only weakly reduced Kdr currents. However, at a concentration of 5 mM which should also affect Kv1.3 and 1.6, TEA inhibited about 30% of the Kdr conductance. Alpha-dendrotoxin, which selectively inhibits Kv1.1, 1.2 and 1.6, reduced only weakly Kdr currents, indicating that channels formed by homomeric assemblies of these subunits are not important contributors of Kdr currents. Finally, agitoxin-2 and margatoxin strongly inhibited the current. CONCLUSIONS/SIGNIFICANCE:These results indicate that Kv1.3 containing channels predominantly determined Kdr currents in activated microglia after SE

    Hyaluronan Export through Plasma Membranes Depends on Concurrent K+ Efflux by Kir Channels

    Get PDF
    Hyaluronan is synthesized within the cytoplasm and exported into the extracellular matrix through the cell membrane of fibroblasts by the MRP5 transporter. In order to meet the law of electroneutrality, a cation is required to neutralize the emerging negative hyaluronan charges. As we previously observed an inhibiting of hyaluronan export by inhibitors of K+ channels, hyaluronan export was now analysed by simultaneously measuring membrane potential in the presence of drugs. This was done by both hyaluronan import into inside-out vesicles and by inhibition with antisense siRNA. Hyaluronan export from fibroblast was particularly inhibited by glibenclamide, ropivacain and BaCl2 which all belong to ATP-sensitive inwardly-rectifying Kir channel inhibitors. Import of hyaluronan into vesicles was activated by 150 mM KCl and this activation was abolished by ATP. siRNA for the K+ channels Kir3.4 and Kir6.2 inhibited hyaluronan export. Collectively, these results indicated that hyaluronan export depends on concurrent K+ efflux

    Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.

    Get PDF
    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases

    Glucose-induced ERM protein activation and translocation regulates insulin secretion

    No full text
    A key step in regulating insulin secretion is insulin granule trafficking to the plasma membrane. Using live-cell time-lapse confocal microscopy, we observed a dynamic association of insulin granules with filamentous actin and PIP2-enriched structures. We found that the scaffolding protein family ERM, comprising ezrin, radixin, and moesin, are expressed in β-cells and target both F-actin and PIP2. Furthermore, ERM proteins are activated via phosphorylation in a glucose- and calcium-dependent manner. This activation leads to a translocation of the ERM proteins to sites on the cell periphery enriched in insulin granules, the exocyst complex docking protein Exo70, and lipid rafts. ERM scaffolding proteins also participate in insulin granule trafficking and docking to the plasma membrane. Overexpression of a truncated dominant-negative ezrin construct that lacks the ERM F-actin binding domain leads to a reduction in insulin granules near the plasma membrane and impaired secretion. Conversely, overexpression of a constitutively active ezrin results in more granules near the cell periphery and an enhancement of insulin secretion. Diabetic mouse islets contain less active ERM, suggestive of a novel mechanism whereby impairment of insulin granule trafficking to the membrane through a complex containing F-actin, PIP2, Exo70, and ERM proteins contributes to defective insulin secretion

    Hyaluronidase enhances the activity of adriamycin in breast cancer models in vitro and in vivo

    Get PDF
    The effect of hyaluronidase and a combination of hyaluronidase with Adriamycin was investigated on several breast cancer models in vitro and in vivo. In vitro enzyme treatment (using concentrations up to 80,000 IU/1) of murine (MXT-, MXT +/-, and MXT+) and human (MCF-7, ZR-75-1 and T-47-D) breast cancer cell lines did not inhibit tumour cell proliferation (measured by a kinetic crystal violet assay) in either case. Although high-dose hyaluronidase (1.2 x 10(6) IU/kg) was ineffective, when administered peritumourally to the MXT M3.2 mammary carcinoma of the B6D2F1 mouse, it is remarkable that five "megadoses" were excellently tolerated. However, the antineoplastic activity of Adriamycin against the oestrogen-receptor-positive variant of the MXT tumour was significantly enhanced by combination with concentrations of hyaluronidase that were inactive per se, both in vitro and in vivo. Interestingly, the enhancement of the in vivo antitumour activity was not compromised by toxic side-effects
    • …
    corecore