26 research outputs found

    Computer-aided diagnosis for (123I)FP-CIT imaging: impact on clinical reporting

    Get PDF
    BACKGROUND: For (123I)FP-CIT imaging, a number of algorithms have shown high performance in distinguishing normal patient images from those with disease, but none have yet been tested as part of reporting workflows. This study aims to evaluate the impact on reporters' performance of a computer-aided diagnosis (CADx) tool developed from established machine learning technology. Three experienced (123I)FP-CIT reporters (two radiologists and one clinical scientist) were asked to visually score 155 reconstructed clinical and research images on a 5-point diagnostic confidence scale (read 1). Once completed, the process was then repeated (read 2). Immediately after submitting each image score for a second time, the CADx system output was displayed to reporters alongside the image data. With this information available, the reporters submitted a score for the third time (read 3). Comparisons between reads 1 and 2 provided evidence of intra-operator reliability, and differences between reads 2 and 3 showed the impact of the CADx. RESULTS: The performance of all reporters demonstrated a degree of variability when analysing images through visual analysis alone. However, inclusion of CADx improved consistency between reporters, for both clinical and research data. The introduction of CADx increased the accuracy of the radiologists when reporting (unfamiliar) research images but had less impact on the clinical scientist and caused no significant change in accuracy for the clinical data. CONCLUSIONS: The outcomes for this study indicate the value of CADx as a diagnostic aid in the clinic and encourage future development for more refined incorporation into clinical practice

    Deep cascade classifiers to detect clusters of microcalcifications

    No full text
    Recent advances in Computer-Aided Detection (CADe) for the automatic detection of clustered microcalcifications on mammograms show that cascade classifiers can compete with high-end commercial systems. In this paper, we introduce a deep cascade detector where the learning algorithm of each binary pixel classifier has been redesigned in the early stopping mechanism conventionally used to avoid overfitting to the training data. In this way, we strongly increase the number of features considered in each stage of the cascade (hence the term “deep”), yet we still benefit from the cascade framework by obtaining a very fast processing of mammograms (less than one second per image). We evaluated the proposed approach on a database of full-field digital mammograms; the experiments revealed a statistically significant improvement of deep cascade with respect to the traditional cascade framework.We also obtained statistically significantly higher performance than one of the most widespread commercial CADe systems, the Hologic R2CAD ImageChecker. Specifically, at the same number of false positives per image of R2CAD (0.21), the deep cascade detected 96% of true lesions against the 90% of R2CAD, whereas at the same lesion sensitivity of R2CAD (90%), we obtained 0.05 false positives per image for the deep cascade against the 0.21 of R2CAD

    LUT-QNE: Look-up-table quantum noise equalization in digital mammograms

    No full text
    Quantum noise is a signal-dependent, Poisson-distributed noise and the dominant noise source in digital mammography. Quantum noise removal or equalization has been shown to be an important step in the automatic detection of microcalcifications. However, it is often limited by the difficulty of robustly estimating the noise parameters on the images. In this study, a nonparametric image intensity transformation method that equalizes quantum noise in digital mammograms is described. A simple Look-Up-Table for Quantum Noise Equalization (LUT-QNE) is determined based on the assumption that noise properties do not vary significantly across the images. This method was evaluated on a dataset of 252 raw digital mammograms by comparing noise statistics before and after applying LUT-QNE. Performance was also tested as a preprocessing step in two microcalcification detection schemes. Results show that the proposed method statistically significantly improves microcalcification detection performance
    corecore