43 research outputs found

    Predicting Outcomes of Prostate Cancer Immunotherapy by Personalized Mathematical Models

    Get PDF
    Therapeutic vaccination against disseminated prostate cancer (PCa) is partially effective in some PCa patients. We hypothesized that the efficacy of treatment will be enhanced by individualized vaccination regimens tailored by simple mathematical models.We developed a general mathematical model encompassing the basic interactions of a vaccine, immune system and PCa cells, and validated it by the results of a clinical trial testing an allogeneic PCa whole-cell vaccine. For model validation in the absence of any other pertinent marker, we used the clinically measured changes in prostate-specific antigen (PSA) levels as a correlate of tumor burden. Up to 26 PSA levels measured per patient were divided into each patient's training set and his validation set. The training set, used for model personalization, contained the patient's initial sequence of PSA levels; the validation set contained his subsequent PSA data points. Personalized models were simulated to predict changes in tumor burden and PSA levels and predictions were compared to the validation set. The model accurately predicted PSA levels over the entire measured period in 12 of the 15 vaccination-responsive patients (the coefficient of determination between the predicted and observed PSA values was R(2) = 0.972). The model could not account for the inconsistent changes in PSA levels in 3 of the 15 responsive patients at the end of treatment. Each validated personalized model was simulated under many hypothetical immunotherapy protocols to suggest alternative vaccination regimens. Personalized regimens predicted to enhance the effects of therapy differed among the patients.Using a few initial measurements, we constructed robust patient-specific models of PCa immunotherapy, which were retrospectively validated by clinical trial results. Our results emphasize the potential value and feasibility of individualized model-suggested immunotherapy protocols

    An Integrated Disease/Pharmacokinetic/Pharmacodynamic Model Suggests Improved Interleukin-21 Regimens Validated Prospectively for Mouse Solid Cancers

    Get PDF
    Interleukin (IL)-21 is an attractive antitumor agent with potent immunomodulatory functions. Yet thus far, the cytokine has yielded only partial responses in solid cancer patients, and conditions for beneficial IL-21 immunotherapy remain elusive. The current work aims to identify clinically-relevant IL-21 regimens with enhanced efficacy, based on mathematical modeling of long-term antitumor responses. For this purpose, pharmacokinetic (PK) and pharmacodynamic (PD) data were acquired from a preclinical study applying systemic IL-21 therapy in murine solid cancers. We developed an integrated disease/PK/PD model for the IL-21 anticancer response, and calibrated it using selected “training” data. The accuracy of the model was verified retrospectively under diverse IL-21 treatment settings, by comparing its predictions to independent “validation” data in melanoma and renal cell carcinoma-challenged mice (R2>0.90). Simulations of the verified model surfaced important therapeutic insights: (1) Fractionating the standard daily regimen (50 µg/dose) into a twice daily schedule (25 µg/dose) is advantageous, yielding a significantly lower tumor mass (45% decrease); (2) A low-dose (12 µg/day) regimen exerts a response similar to that obtained under the 50 µg/day treatment, suggestive of an equally efficacious dose with potentially reduced toxicity. Subsequent experiments in melanoma-bearing mice corroborated both of these predictions with high precision (R2>0.89), thus validating the model also prospectively in vivo. Thus, the confirmed PK/PD model rationalizes IL-21 therapy, and pinpoints improved clinically-feasible treatment schedules. Our analysis demonstrates the value of employing mathematical modeling and in silico-guided design of solid tumor immunotherapy in the clinic

    Mathematical Modelling as a Proof of Concept for MPNs as a Human Inflammation Model for Cancer Development

    Get PDF
    <p><b>Left:</b> Typical development in stem cells (top panel A) and mature cells (bottom panel B). Healthy hematopoietic cells (full blue curves) dominate in the early phase where the number of malignant cells (stipulated red curves) are few. The total number of cells is also shown (dotted green curves). When a stem cell mutates without repairing mechanisms, a slowly increasing exponential growth starts. At a certain stage, the malignant cells become dominant, and the healthy hematopoietic cells begin to show a visible decline. Finally, the composition between the cell types results in a takeover by the malignant cells, leading to an exponential decline in hematopoietic cells and ultimately their extinction. The development is driven by an approximately exponential increase in the MPN stem cells, and the development is closely followed by the mature MPN cells. <b>Right:</b> B)The corresponding allele burden (7%, 33% and 67% corresponding to ET, PV, and PMF, respectively) defined as the ratio of MPN mature cells to the total number of mature cells.</p

    Optimizing Combination Therapies with Existing and Future CML Drugs

    Get PDF
    Small-molecule inhibitors imatinib, dasatinib and nilotinib have been developed to treat Chromic Myeloid Leukemia (CML). The existence of a triple-cross-resistant mutation, T315I, has been a challenging problem, which can be overcome by finding new inhibitors. Many new compounds active against T315I mutants are now at different stages of development. In this paper we develop an algorithm which can weigh different combination treatment protocols according to their cross-resistance properties, and find the protocols with the highest probability of treatment success. This algorithm also takes into account drug toxicity by minimizing the number of drugs used, and their concentration. Although our methodology is based on a stochastic model of CML microevolution, the algorithm itself does not require measurements of any parameters (such as mutation rates, or division/death rates of cells), and can be used by medical professionals without a mathematical background. For illustration, we apply this algorithm to the mutation data obtained in [1], [2]

    Personalizing immunotherapy

    No full text
    corecore