232 research outputs found

    Considerations for using potential surrogate endpoints in cancer screening trials.

    Get PDF
    The requirement of large-scale expensive cancer screening trials spanning decades creates considerable barriers to the development, commercialisation, and implementation of novel screening tests. One way to address these problems is to use surrogate endpoints for the ultimate endpoint of interest, cancer mortality, at an earlier timepoint. This Review aims to highlight the issues underlying the choice and use of surrogate endpoints for cancer screening trials, to propose criteria for when and how we might use such endpoints, and to suggest possible candidates. We present the current landscape and challenges, and discuss lessons and shortcomings from the therapeutic trial setting. It is hugely challenging to validate a surrogate endpoint, even with carefully designed clinical studies. Nevertheless, we consider whether there are candidates that might satisfy the requirements defined by research and regulatory bodies

    The chemopreventive polyphenol Curcumin prevents hematogenous breast cancer metastases in immunodeficient mice

    Get PDF
    Dissemination of metastatic cells probably occurs long before diagnosis of the primary tumor. Metastasis during early phases of carcinogenesis in high risk patients is therefore a potential prevention target. The plant polyphenol Curcumin has been proposed for dietary prevention of cancer. We therefore examined its effects on the human breast cancer cell line MDA-MB-231 in vitro and in a mouse metastasis model. Curcumin strongly induces apoptosis in MDA- MB- 231 cells in correlation with reduced activation of the survival pathway NF kappa B, as a consequence of diminished I kappa B and p65 phosphorylation. Curcumin also reduces the expression of major matrix metalloproteinases (MMPs) due to reduced NF kappa B activity and transcriptional downregulation of AP-1. NF kappa B/p65 silencing is sufficient to downregulate c-jun and MMP expression. Reduced NF kappa B/AP-1 activity and MMP expression lead to diminished invasion through a reconstituted basement membrane and to a significantly lower number of lung metastases in immunodeficient mice after intercardiac injection of 231 cells (p=0.0035). 68% of Curcumin treated but only 17% of untreated animals showed no or very few lung metastases, most likely as a consequence of down-regulation of NF kappa B/AP-1 dependent MMP expression and direct apoptotic effects on circulating tumor cells but not on established metastases. Dietary chemoprevention of metastases appears therefore feasible. Copyright (c) 2007 S. Karger AG, Basel

    Delivery of sTRAIL variants by MSCs in combination with cytotoxic drug treatment leads to p53-independent enhanced antitumor effects

    Get PDF
    Mesenchymal stem cells (MSCs) are able to infiltrate tumor tissues and thereby effectively deliver gene therapeutic payloads. Here, we engineered murine MSCs (mMSCs) to express a secreted form of the TNF-related apoptosis-inducing ligand (TRAIL), which is a potent inducer of apoptosis in tumor cells, and tested these MSCs, termed MSC.sTRAIL, in combination with conventional chemotherapeutic drug treatment in colon cancer models. When we pretreated human colorectal cancer HCT116 cells with low doses of 5-fluorouracil (5-FU) and added MSC.sTRAIL, we found significantly increased apoptosis as compared with single-agent treatment. Moreover, HCT116 xenografts, which were cotreated with 5-FU and systemically delivered MSC.sTRAIL, went into remission. Noteworthy, this effect was protein 53 (p53) independent and was mediated by TRAIL-receptor 2 (TRAIL-R2) upregulation, demonstrating the applicability of this approach in p53-defective tumors. Consequently, when we generated MSCs that secreted TRAIL-R2-specific variants of soluble TRAIL (sTRAIL), we found that such engineered MSCs, labeled MSC.sTRAIL DR5, had enhanced antitumor activity in combination with 5-FU when compared with MSC.sTRAIL. In contrast, TRAIL-resistant pancreatic carcinoma PancTu1 cells responded better to MSC.sTRAIL DR4 when the antiapoptotic protein XIAP (X-linked inhibitor of apoptosis protein) was silenced concomitantly. Taken together, our results demonstrate that TRAIL-receptor selective variants can potentially enhance the therapeutic efficacy of MSC-delivered TRAIL as part of individualized and tumor-specific combination treatments. © 2013 Macmillan Publishers Limited All rights reserved

    Transcriptional dysregulation of Interferome in experimental and human Multiple Sclerosis

    Get PDF
    Recent evidence indicates that single multiple sclerosis (MS) susceptibility genes involved in interferon (IFN) signaling display altered transcript levels in peripheral blood of untreated MS subjects, suggesting that responsiveness to endogenous IFN is dysregulated during neuroinflammation. To prove this hypothesis we exploited the systematic collection of IFN regulated genes (IRG) provided by the Interferome database and mapped Interferome changes in experimental and human MS. Indeed, central nervous system tissue and encephalitogenic CD4 T cells during experimental autoimmune encephalomyelitis were characterized by massive changes in Interferome transcription. Further, the analysis of almost 500 human blood transcriptomes showed that (i) several IRG changed expression at distinct MS stages with a core of 21 transcripts concordantly dysregulated in all MS forms compared with healthy subjects; (ii) 100 differentially expressed IRG were validated in independent case-control cohorts; and (iii) 53 out of 100 dysregulated IRG were targeted by IFN-beta treatment in vivo. Finally, ex vivo and in vitro experiments established that IFN-beta administration modulated expression of two IRG, ARRB1 and CHP1, in immune cells. Our study confirms the impairment of Interferome in experimental and human MS, and describes IRG signatures at distinct disease stages which can represent novel therapeutic targets in MS

    Ataxin-1 Fusion Partners Alter PolyQ Lethality and Aggregation

    Get PDF
    Intranuclear inclusion bodies (IBs) are the histopathologic markers of multiple protein folding diseases. IB formation has been extensively studied using fluorescent fusion products of pathogenic polyglutamine (polyQ) expressing proteins. These studies have been informative in determining the cellular targets of expanded polyQ protein as well as the methods by which cells rid themselves of IBs. The experimental thrust has been to intervene in the process of polyQ aggregation in an attempt to alleviate cytotoxicity. However new data argues against the notion that polyQ aggregation and cytotoxicity are inextricably linked processes. We reasoned that changing the protein context of a disease causing polyQ protein could accelerate its precipitation as an IB, potentially reducing its cytotoxicity. Our experimental strategy simply exploited the fact that conjoined proteins influence each others folding and aggregation properties. We fused a full-length pathogenic ataxin-1 construct to fluorescent tags (GFP and DsRed1-E5) that exist at different oligomeric states. The spectral properties of the DsRed1-E5-ataxin-1 transfectants had the additional advantage of allowing us to correlate fluorochrome maturation with cytotoxicity. Each fusion protein expressed a distinct cytotoxicity and IB morphology. Flow cytometric analyses of transfectants expressing the greatest fluorescent signals revealed that the DsRed1-E5-ataxin-1 fusion was more toxic than GFP fused ataxin-1 (31.8±4.5% cell death versus 12.85±3%), although co-transfection with the GFP fusion inhibited maturation of the DsRed1-E5 fluorochrome and diminished the toxicity of the DsRed1-E5-ataxin-1 fusion. These data show that polyQ driven aggregation can be influenced by fusion partners to generate species with different toxic properties and provide new opportunities to study IB aggregation, maturation and lethality

    Nocturnal Hypoxia and Loss of Kidney Function

    Get PDF
    Background: Although obstructive sleep apnea (OSA) is more common in patients with kidney disease, whether nocturnal hypoxia affects kidney function is unknown. Methods: We studied all adult subjects referred for diagnostic testing of sleep apnea between July 2005 and December 31 2007 who had serial measurement of their kidney function. Nocturnal hypoxia was defined as oxygen saturation (SaO2) below 90 % for 1212 % of the nocturnal monitoring time. The primary outcome, accelerated loss of kidney function, was defined as a decline in estimated glomerular filtration rate (eGFR) 4 ml/min/1.73 m2 per year. Results: 858 participants were included and followed for a mean study period of 2.1 years. Overall 374 (44%) had nocturnal hypoxia, and 49 (5.7%) had accelerated loss of kidney function. Compared to controls without hypoxia, patients with nocturnal hypoxia had a significant increase in the adjusted risk of accelerated kidney function loss (odds ratio (OR) 2.89, 95 % confidence interval [CI] 1.25, 6.67). Conclusion: Nocturnal hypoxia was independently associated with an increased risk of accelerated kidney function loss. Further studies are required to determine whether treatment and correction of nocturnal hypoxia reduces loss of kidney function

    Glioblastoma Therapy with Cytotoxic Mesenchymal Stromal Cells Optimized by Bioluminescence Imaging of Tumor and Therapeutic Cell Response

    Get PDF
    Genetically modified adipose tissue derived mesenchymal stromal cells (hAMSCs) with tumor homing capacity have been proposed for localized therapy of chemo- and radiotherapy resistant glioblastomas. We demonstrate an effective procedure to optimize glioblastoma therapy based on the use of genetically modified hAMSCs and in vivo non invasive monitoring of tumor and therapeutic cells. Glioblastoma U87 cells expressing Photinus pyralis luciferase (Pluc) were implanted in combination with hAMSCs expressing a trifunctional Renilla reniformis luciferase-red fluorescent protein-thymidine kinase reporter in the brains of SCID mice that were subsequently treated with ganciclovir (GCV). The resulting optimized therapy was effective and monitoring of tumor cells by bioluminescence imaging (BLI) showed that after 49 days GCV treatment reduced significantly the hAMSC treated tumors; by a factor of 104 relative to controls. Using a Pluc reporter regulated by an endothelial specific promoter and in vivo BLI to image hAMSC differentiation we gained insight on the therapeutic mechanism. Implanted hAMSCs homed to tumor vessels, where they differentiated to endothelial cells. We propose that the tumor killing efficiency of genetically modified hAMSCs results from their association with the tumor vascular system and should be useful vehicles to deliver localized therapy to glioblastoma surgical borders following tumor resection

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    TRAIL-receptor preferences in pancreatic cancer cells revisited: Both TRAIL-R1 and TRAIL-R2 have a licence to kill

    Get PDF
    Background TRAIL is a potent and specific inducer of apoptosis in tumour cells and therefore is a possible new cancer treatment. It triggers apoptosis by binding to its cognate, death-inducing receptors, TRAIL-R1 and TRAIL-R2. In order to increase its activity, receptor-specific ligands and agonistic antibodies have been developed and some cancer types, including pancreatic cancer, have been reported to respond preferentially to TRAIL-R1 triggering. The aim of the present study was to examine an array of TRAIL-receptor specific variants on a number of pancreatic cancer cells and test the generality of the concept of TRAIL-R1 preference in these cells. Methods TRAIL-R1 and TRAIL-R2 specific sTRAIL variants were designed and tested on a number of pancreatic cancer cells for their TRAIL-receptor preference. These sTRAIL variants were produced in HEK293 cells and were secreted into the medium. After having measured and normalised the different sTRAIL variant concentrations, they were applied to pancreatic and control cancer cells. Twenty-four hours later apoptosis was measured by DNA hypodiploidy assays. Furthermore, the specificities of the sTRAIL variants were validated in HCT116 cells that were silenced either for TRAIL-R1 or TRAIL-R2. Results Our results show that some pancreatic cancer cells use TRAIL-R1 to induce cell death, whereas other pancreatic carcinoma cells such as AsPC-1 and BxPC-3 cells trigger apoptosis via TRAIL-R2. This observation extended to cells that were naturally TRAIL-resistant and had to be sensitised by silencing of XIAP (Panc1 cells). The measurement of TRAIL-receptor expression by FACS revealed no correlation between receptor preferences and the relative levels of TRAIL-R1 and TRAIL-R2 on the cellular surface. Conclusions These results demonstrate that TRAIL-receptor preferences in pancreatic cancer cells are variable and that predictions according to cancer type are difficult and that determining factors to inform the optimal TRAIL-based treatments still have to be identified
    • …
    corecore