87 research outputs found

    A re-examination of otoconia from the Shaker mouse

    Full text link
    We have studied saccular and utricular otoconia from Shaker-1 and Shaker-2 mice by X-ray diffraction and scanning electron microscopy. In contrast to previous reports, we found that the crystals were composed of calcite rather than poly crystalline hydroxylapatite. These crystals were indistinguishable mineralogically and morphologically from normal mouse otoconia. The reported occurrence of hydroxylapatite otoconia in the Shaker mouse is probably false.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47271/1/405_2004_Article_BF00464412.pd

    A Machine-Learning-Based Bibliometric Analysis of the Scientific Literature on Anal Cancer

    Get PDF
    Squamous-cell carcinoma of the anus (ASCC) is a rare disease. Barriers have been encountered to conduct clinical and translational research in this setting. Despite this, ASCC has been a prime example of collaboration amongst researchers. We performed a bibliometric analysis of ASCC-related literature of the last 20 years, exploring common patterns in research, tracking collaboration and identifying gaps. The electronic Scopus database was searched using the keywords “anal cancer”, to include manuscripts published in English, between 2000 and 2020. Data analysis was performed using R-Studio 0.98.1091 software. A machine-learning bibliometric method was applied. The bibliometrix R package was used. A total of 2322 scientific documents was found. The average annual growth rate in publication was around 40% during 2000–2020. The five most productive countries were United States of America (USA), United Kingdom (UK), France, Italy and Australia. The USA and UK had the greatest link strength of international collaboration (22.6% and 19.0%). Two main clusters of keywords for published research were identified: (a) prevention and screening and (b) overall management. Emerging topics included imaging, biomarkers and patient-reported outcomes. Further efforts are required to increase collaboration and funding to sustain future research in the setting of ASCC

    The Novel Mouse Mutation Oblivion Inactivates the PMCA2 Pump and Causes Progressive Hearing Loss

    Get PDF
    Progressive hearing loss is common in the human population, but we have few clues to the molecular basis. Mouse mutants with progressive hearing loss offer valuable insights, and ENU (N-ethyl-N-nitrosourea) mutagenesis is a useful way of generating models. We have characterised a new ENU-induced mouse mutant, Oblivion (allele symbol Obl), showing semi-dominant inheritance of hearing impairment. Obl/+ mutants showed increasing hearing impairment from post-natal day (P)20 to P90, and loss of auditory function was followed by a corresponding base to apex progression of hair cell degeneration. Obl/Obl mutants were small, showed severe vestibular dysfunction by 2 weeks of age, and were completely deaf from birth; sensory hair cells were completely degenerate in the basal turn of the cochlea, although hair cells appeared normal in the apex. We mapped the mutation to Chromosome 6. Mutation analysis of Atp2b2 showed a missense mutation (2630C→T) in exon 15, causing a serine to phenylalanine substitution (S877F) in transmembrane domain 6 of the PMCA2 pump, the resident Ca2+ pump of hair cell stereocilia. Transmembrane domain mutations in these pumps generally are believed to be incompatible with normal targeting of the protein to the plasma membrane. However, analyses of hair cells in cultured utricular maculae of Obl/Obl mice and of the mutant Obl pump in model cells showed that the protein was correctly targeted to the plasma membrane. Biochemical and biophysical characterisation showed that the pump had lost a significant portion of its non-stimulated Ca2+ exporting ability. These findings can explain the progressive loss of auditory function, and indicate the limits in our ability to predict mechanism from sequence alone

    Age-Related Changes of Myelin Basic Protein in Mouse and Human Auditory Nerve

    Get PDF
    Age-related hearing loss (presbyacusis) is the most common type of hearing impairment. One of the most consistent pathological changes seen in presbyacusis is the loss of spiral ganglion neurons (SGNs). Defining the cellular and molecular basis of SGN degeneration in the human inner ear is critical to gaining a better understanding of the pathophysiology of presbyacusis. However, information on age-related cellular and molecular alterations in the human spiral ganglion remains scant, owing to the very limited availably of human specimens suitable for high resolution morphological and molecular analysis. This study aimed at defining age-related alterations in the auditory nerve in human temporal bones and determining if immunostaining for myelin basic protein (MBP) can be used as an alternative approach to electron microscopy for evaluating myelin degeneration. For comparative purposes, we evaluated ultrastructural alternations and changes in MBP immunostaining in aging CBA/CaJ mice. We then examined 13 temporal bones from 10 human donors, including 4 adults aged 38–46 years (middle-aged group) and 6 adults aged 63–91 years (older group). Similar to the mouse, intense immunostaining of MBP was present throughout the auditory nerve of the middle-aged human donors. Significant declines in MBP immunoreactivity and losses of MBP+ auditory nerve fibers were observed in the spiral ganglia of both the older human and aged mouse ears. This study demonstrates that immunostaining for MBP in combination with confocal microscopy provides a sensitive, reliable, and efficient method for assessing alterations of myelin sheaths in the auditory nerve. The results also suggest that myelin degeneration may play a critical role in the SGN loss and the subsequent decline of the auditory nerve function in presbyacusis
    corecore