155 research outputs found
Basal keratin expression in breast cancer by quantification of mRNA and by immunohistochemistry
Definitions of basal-like breast cancer phenotype vary, and microarray-based expression profiling analysis remains the gold standard for the identification of these tumors. Immunohistochemical identification of basal-like carcinomas is hindered with a fact, that on microarray level not all of them express basal-type cytokeratin 5/6, 14 and 17. We compared expression of cytokeratin 5, 14 and 17 in 115 patients with operable breast cancer estimated by real-time RT-PCR and immunohistochemistry
Triple negative breast carcinoma is a prognostic factor in Taiwanese women
© 2009 Lin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Triple-negative breast cancer with brain metastases: a comparison between basal-like and non-basal-like biological subtypes
The aim of this study was to divide the group of triple-negative breast cancer patients with brain metastases into basal-like and non-basal-like biological subtypes in order to compare clinical features and survival rates in those two groups. A comprehensive analysis of 111 consecutive triple-negative breast cancer patients with brain metastases treated in the years 2003â2009 was performed. In 75 patients, immunohistochemistry was used as a surrogate of microarray in order to evaluate the expression of three basal markers: cytokeratin 5/6 (CK 5/6), EGFR/HER1 and c-KIT. The basal-like (ER/PgR/HER2-negative, CK5/6positive and/or HER1-positive) and non-basal-like (ER/PgR/HER2-negative, CK5/6-negative, HER1-negative) subsets were selected. Clinical features and survivals were compared in both groups. In the group of 111 triple-negative breast cancer patients, median DFS, OS and survival from brain metastases were 20, 29 and 4Â months, respectively. In 75 patients who were evaluable for basal markers, median DFS, OS and survival from brain metastases were 18, 26 and 3.2Â months, respectively. In the basal-like subtype, the survival rates were 15, 26 and 3Â months, respectively, and in the non-basal-like subtypes, they were 20, 30 and 2.8Â months, respectively. No statistically significant differences in survivals were detected between the basal-like and non-basal-like biological subtypes. Factors influencing survival from brain metastases were: Karnofsky performance status (KPS), the status of extracranial disease and age. Biological markers differentiating triple-negative group into basal-like and non-basal-like subtype (CK 5/6, HER1, c-KIT) had no influence on survival. In patients with triple-negative breast cancer and brain metastases, well-known clinical, but not molecular, features correlated with survival
Gain-of-Function R225W Mutation in Human AMPKÎł3 Causing Increased Glycogen and Decreased Triglyceride in Skeletal Muscle
BACKGROUND: AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that is evolutionarily conserved from yeast to mammals and functions to maintain cellular and whole body energy homeostasis. Studies in experimental animals demonstrate that activation of AMPK in skeletal muscle protects against insulin resistance, type 2 diabetes and obesity. The regulatory gamma(3) subunit of AMPK is expressed exclusively in skeletal muscle; however, its importance in controlling overall AMPK activity is unknown. While evidence is emerging that gamma subunit mutations interfere specifically with AMP activation, there remains some controversy regarding the impact of gamma subunit mutations. Here we report the first gain-of-function mutation in the muscle-specific regulatory gamma(3) subunit in humans. METHODS AND FINDINGS: We sequenced the exons and splice junctions of the AMPK gamma(3) gene (PRKAG3) in 761 obese and 759 lean individuals, identifying 87 sequence variants including a novel R225W mutation in subjects from two unrelated families. The gamma(3) R225W mutation is homologous in location to the gamma(2)R302Q mutation in patients with Wolf-Parkinson-White syndrome and to the gamma(3)R225Q mutation originally linked to an increase in muscle glycogen content in purebred Hampshire Rendement Napole (RN-) pigs. We demonstrate in differentiated muscle satellite cells obtained from the vastus lateralis of R225W carriers that the mutation is associated with an approximate doubling of both basal and AMP-activated AMPK activities. Moreover, subjects bearing the R225W mutation exhibit a approximately 90% increase of skeletal muscle glycogen content and a approximately 30% decrease in intramuscular triglyceride (IMTG). CONCLUSIONS: We have identified for the first time a mutation in the skeletal muscle-specific regulatory gamma(3) subunit of AMPK in humans. The gamma(3)R225W mutation has significant functional effects as demonstrated by increases in basal and AMP-activated AMPK activities, increased muscle glycogen and decreased IMTG. Overall, these findings are consistent with an important regulatory role for AMPK gamma(3) in human muscle energy metabolism
Inhibition of radiation induced migration of human head and neck squamous cell carcinoma cells by blocking of EGF receptor pathways
<p>Abstract</p> <p>Background</p> <p>Recently it has been shown that radiation induces migration of glioma cells and facilitates a further spread of tumor cells locally and systemically. The aim of this study was to evaluate whether radiotherapy induces migration in head and neck squamous cell carcinoma (HNSCC). A further aim was to investigate the effects of blocking the epidermal growth factor receptor (EGFR) and its downstream pathways (Raf/MEK/ERK, PI3K/Akt) on tumor cell migration in vitro.</p> <p>Methods</p> <p>Migration of tumor cells was assessed via a wound healing assay and proliferation by a MTT colorimeritric assay using 3 HNSCC cell lines (BHY, CAL-27, HN). The cells were treated with increasing doses of irradiation (2 Gy, 5 Gy, 8 Gy) in the presence or absence of EGF, EGFR-antagonist (AG1478) or inhibitors of the downstream pathways PI3K (LY294002), mTOR (rapamycin) and MEK1 (PD98059). Biochemical activation of EGFR and the downstream markers Akt and ERK were examined by Western blot analysis.</p> <p>Results</p> <p>In absence of stimulation or inhibition, increasing doses of irradiation induced a dose-dependent enhancement of migrating cells (p < 0.05 for the 3 HNSCC cell lines) and a decrease of cell proliferation (p < 0.05 for the 3 HNSCC cell lines). The inhibition of EGFR or the downstream pathways reduced cell migration significantly (almost all p < 0.05 for the 3 HNSCC cell lines). Stimulation of HNSCC cells with EGF caused a significant increase in migration (p < 0.05 for the 3 HNSCC cell lines). After irradiation alone a pronounced activation of EGFR was observed by Western blot analysis.</p> <p>Conclusion</p> <p>Our results demonstrate that the EGFR is involved in radiation induced migration of HNSCC cells. Therefore EGFR or the downstream pathways might be a target for the treatment of HNSCC to improve the efficacy of radiotherapy.</p
Treatment options for patients with triple-negative breast cancer
Breast cancer is a heterogeneous disease composed of different subtypes, characterized by their different clinicopathological characteristics, prognoses and responses to treatment. In the past decade, significant advances have been made in the treatment of breast cancer sensitive to hormonal treatments, as well as in patients whose malignant cells overexpress or amplify HER2. In contrast, mainly due to the lack of molecular targets, little progress has been made in the treatment of patients with triple-negative breast cancer. Recent improved understanding of the natural history, pathophysiology, and molecular features of triple-negative breast cancers have provided new insights into management and therapeutic strategies for women affected with this entity. Ongoing and planned translational clinical trials are likely to optimize and improve treatment of women with this disease
- âŠ