1,010 research outputs found

    Winter wheat roots grow twice as deep as spring wheat roots, is this important for N uptake and N leaching losses?

    Get PDF
    Cropping systems comprising winter catch crops followed by spring wheat could reduce N leaching risks compared to traditional winter wheat systems in humid climates. We studied the soil mineral N (Ninorg) and root growth of winter- and spring wheat to 2.5 m depth during three years. Root depth of winter wheat (2.2 m) was twice that of spring wheat, and this was related to much lower amounts of Ninorg in the 1 to 2.5 m layer after winter wheat (81 kg Ninorg ha-1 less). When growing winter catch crops before spring wheat, N content in the 1 to 2.5 m layer after spring wheat was not different from that after winter wheat. The results suggest that by virtue of its deep rooting, winter wheat may not lead to high levels of leaching as it is often assumed in humid climates. Deep soil and root measurements (below 1 m) in this experiment were essential to answer the questions we posed

    On the renormalization of multiparton webs

    Get PDF
    We consider the recently developed diagrammatic approach to soft-gluon exponentiation in multiparton scattering amplitudes, where the exponent is written as a sum of webs - closed sets of diagrams whose colour and kinematic parts are entangled via mixing matrices. A complementary approach to exponentiation is based on the multiplicative renormalizability of intersecting Wilson lines, and their subsequent finite anomalous dimension. Relating this framework to that of webs, we derive renormalization constraints expressing all multiple poles of any given web in terms of lower-order webs. We examine these constraints explicitly up to four loops, and find that they are realised through the action of the web mixing matrices in conjunction with the fact that multiple pole terms in each diagram reduce to sums of products of lower-loop integrals. Relevant singularities of multi-eikonal amplitudes up to three loops are calculated in dimensional regularization using an exponential infrared regulator. Finally, we formulate a new conjecture for web mixing matrices, involving a weighted sum over column entries. Our results form an important step in understanding non-Abelian exponentiation in multiparton amplitudes, and pave the way for higher-loop computations of the soft anomalous dimension.Comment: 60 pages, 15 figure

    Differential expression of DHHC9 in microsatellite stable and instable human colorectal cancer subgroups

    Get PDF
    Microarray analysis on pooled samples has previously identified ZDHHC9 (DHHC9) to be upregulated in colon adenocarcinoma compared to normal colon mucosa. Analyses of 168 samples from proximal and distal adenocarcinomas using U133plus2.0 microarrays validated these findings, showing a significant two-fold (log 2) upregulation of DHHC9 transcript (P<10(−6)). The upregulation was more striking in microsatellite stable (MSS), than in microsatellite instable (MSI), tumours. Genes known to interact with DHHC9 as H-Ras or N-Ras did not show expression differences between MSS and MSI. Immunohistochemical analysis was performed on 60 colon adenocarcinomas, previously analysed on microarrays, as well as on tissue microarrays with 40 stage I–IV tumours and 46 tumours from different organ sites. DHHC9 protein was strongly expressed in MSS compared to MSI tumours, readily detectable in premalignant lesions, compared to the rare expression seen in normal mucosa. DHHC9 was specific for tumours of the gastrointestinal tract and localised to the Golgi apparatus, in vitro and in vivo. Overexpression of DHHC9 decreased the proliferation of SW480 and CaCo2 MSS cell lines significantly. In conclusion, DHHC9 is a gastrointestinal-related protein highly expressed in MSS colon tumours. The palmitoyl transferase activity, modifying N-Ras and H-Ras, suggests DHHC9 as a target for anticancer drug design

    Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions II - The deconfined phase

    Get PDF
    We present a non-perturbative study of the equation of state in the deconfined phase of Yang-Mills theories in D=2+1 dimensions. We introduce a holographic model, based on the improved holographic QCD model, from which we derive a non-trivial relation between the order of the deconfinement phase transition and the behavior of the trace of the energy-momentum tensor as a function of the temperature T. We compare the theoretical predictions of this holographic model with a new set of high-precision numerical results from lattice simulations of SU(N) theories with N=2, 3, 4, 5 and 6 colors. The latter reveal that, similarly to the D=3+1 case, the bulk equilibrium thermodynamic quantities (pressure, trace of the energy-momentum tensor, energy density and entropy density) exhibit nearly perfect proportionality to the number of gluons, and can be successfully compared with the holographic predictions in a broad range of temperatures. Finally, we also show that, again similarly to the D=3+1 case, the trace of the energy-momentum tensor appears to be proportional to T^2 in a wide temperature range, starting from approximately 1.2 T_c, where T_c denotes the critical deconfinement temperature.Comment: 2+36 pages, 10 figures; v2: comments added, curves showing the holographic predictions included in the plots of the pressure and energy and entropy densities, typos corrected: version published in JHE

    Biochemical mutagens affect the preservation of fungi and biodiversity estimations

    Get PDF
    Many fungi have significant industrial applications or biosafety concerns and maintaining the original characteristics is essential. The preserved fungi have to represent the situation in nature for posterity, biodiversity estimations, and taxonomic research. However, spontaneous fungal mutations and secondary metabolites affecting producing fungi are well known. There is increasing interest in the preservation of microbes in Biological Resource Centers (BRC) to ensure that the organisms remain viable and stable genetically. It would be anathema if they contacted mutagens routinely. However, for the purpose of this discussion, there are three potential sources of biochemical mutagens when obtaining individual fungi from the environment: (a) mixtures of microorganisms are plated routinely onto growth media containing mutagenic antibiotics to control overgrowth by contaminants, (b) the microbial mixtures may contain microorganisms capable of producing mutagenic secondary metabolites, and (c) target fungi for isolation may produce “self” mutagens in pure culture. The probability that these compounds could interact with fungi undermines confidence in the preservation process and the potential effects of these biochemical mutagens are considered for the first time on strains held in BRC in this review

    Seasonal sea ice variability in eastern Fram Strait over the last 2000 years

    Get PDF
    We present a high-resolution (ca. 50 years) biomarker-based reconstruction of seasonal sea ice conditions for the West Svalbard continental margin covering the last ca. 2k years. Our reconstruction is based on the distributions of sea ice algal (IP25) and phytoplankton (brassicasterol and HBI III) lipids in marine sediment core MSM5/5-712-1 retrieved in 2007. The individual and combined (PIP25) temporal profiles, together with estimates of spring sea ice concentration [SpSIC (%)] based on a recent calibration, suggest that sea ice conditions during the interval ca. 50–1700 AD may not have been as variable as described in previous reconstructions, with SpSIC generally in the range ca. 35–45 %. A slight enhancement in SpSIC (ca. 50 %) was identified at ca. 1600 AD, contemporaneous with the Little Ice Age, before declining steadily over the subsequent ca. 400 years to near-modern values (ca. 25 %). In contrast to these spring conditions, our data suggest that surface waters during summer months were ice free for the entire record. The decline in SpSIC in recent centuries is consistent with the known retreat of the winter ice margin from documentary sea ice records. This decrease in sea ice is possibly attributed to enhanced inflow of warm water delivered by the North Atlantic Current and/or increasing air temperatures, as shown in previous marine and terrestrial records. Comparison of our biomarker-based sea ice reconstruction with one obtained previously based on dinocyst distributions in a core from a similar location reveals partial agreement in the early–mid part of the records (ca. 50–1700 AD), but a notable divergence in the most recent ca. 300 years. We hypothesise that this divergence likely reflects the individual signatures of each proxy method, especially as the biomarker-based SpSIC estimates during this interval (\u3c25 %) are much lower than the threshold level (\u3e50 % sea ice cover) used for the dinocyst approach. Alternatively, divergence between outcomes may indicate seasonality shifts in sea ice conditions, such that a combined biomarker-dinocyst approach in future studies might provide further insights into this important parameter
    corecore