1,556 research outputs found
Bayesian inference on random simple graphs with power law degree distributions
We present a model for random simple graphs with power law (i.e., heavy-tailed) degree dis- tributions. To attain this behavior, the edge probabilities in the graph are constructed from BertoinâFujitaâRoynetteâYor (BFRY) random variables, which have been recently utilized in Bayesian statistics for the construction of power law models in several applications. Our construction readily extends to capture the structure of latent factors, similarly to stochastic block- models, while maintaining its power law degree distribution. The BFRY random variables are well approximated by gamma random variables in a variational Bayesian inference routine, which we apply to several network datasets for which power law degree distributions are a natural assumption. By learning the parameters of the BFRY distribution via probabilistic inference, we are able to automatically select the appropriate power law behavior from the data. In order to further scale our inference procedure, we adopt stochastic gradient ascent routines where the gradients are computed on minibatches (i.e., sub- sets) of the edges in the graph.J. Lee and S. Choi were partly supported by an Institute for Information & Communications Technology Promotion (IITP) grant, funded by the Korean government (MSIP) (No.2014- 0-00147, Basic Software Research in Human-level Life- long Machine Learning (Machine Learning Center)) and Naver, Inc. C. Heaukulani undertook this work in part while a visiting researcher at the Hong Kong University of Science and Technology, who along with L. F. James was funded by grant rgc-hkust 601712 of the Hong Kong Special Administrative Region.
EPSRC Grant EP/N014162/1
ATI Grant EP/N510129/
Recommended from our members
Assessing the effect of reducing agents on the selective catalytic reduction of NO<inf>x</inf> over Ag/Al<inf>2</inf>O<inf>3</inf> catalysts
The selective catalytic reduction (SCR) of NOx in the presence of different reducing agents over Ag/Al2O3 prepared by wet impregnation was investigated by probing catalyst activity and using NMR relaxation time analysis.We gratefully acknowledge funding for this work from the EPSRC CASTech grant (EP/G012156/1). Carmine DâAgostino would like to acknowledge Wolfson College, Cambridge, for supporting his research activities. The authors would also like to thank Dr Jonathan Mitchell for useful discussions.This is the final version of the article. It first appeared from RSC via http://dx.doi.org/10.1039/C5CY01508
A disk of dust and molecular gas around a high-mass protostar
The processes leading to the birth of low-mass stars such as our Sun have
been well studied, but the formation of high-mass (> 8 x Sun's mass) stars has
heretofore remained poorly understood. Recent observational studies suggest
that high-mass stars may form in essentially the same way as low-mass stars,
namely via an accretion process, instead of via merging of several low-mass (<
8 Msun) stars. However, there is as yet no conclusive evidence. Here, we report
the discovery of a flattened disk-like structure observed at submillimeter
wavelengths, centered on a massive 15 Msun protostar in the Cepheus-A region.
The disk, with a radius of about 330 astronomical units (AU) and a mass of 1 to
8 Msun, is detected in dust continuum as well as in molecular line emission.
Its perpendicular orientation to, and spatial coincidence with the central
embedded powerful bipolar radio jet, provides the best evidence yet that
massive stars form via disk accretion in direct analogy to the formation of
low-mass stars
Who acquires infection from whom and how? Disentangling multi-host and multi-mode transmission dynamics in the 'elimination' era
Multi-host infectious agents challenge our abilities to understand, predict and manage disease dynamics. Within this, many infectious agents are also able to use, simultaneously or sequentially, multiple modes of transmission. Furthermore, the relative importance of different host species and modes can itself be dynamic, with potential for switches and shifts in host range and/ or transmission mode in response to changing selective pressures, such as those imposed by disease control interventions. The epidemiology of such multi-host, multi-mode infectious agents thereby can involve a multi-faceted community of definitive and intermediate/secondary hosts or vectors, often together with infectious stages in the environment, all of which may represent potential targets, as well as specific challenges, particularly where disease elimination is proposed. Here, we explore, focusing on examples fromboth human and animal pathogen systems, why and how we should aim to disentangle and quantify the relative importance of multi-host multi-mode infectious agent transmission dynamics under contrasting conditions, and ultimately, how this can be used to help achieve efficient and effective disease control.
This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'
New differential equations for on-shell loop integrals
We present a novel type of differential equations for on-shell loop
integrals. The equations are second-order and importantly, they reduce the loop
level by one, so that they can be solved iteratively in the loop order. We
present several infinite series of integrals satisfying such iterative
differential equations. The differential operators we use are best written
using momentum twistor space. The use of the latter was advocated in recent
papers discussing loop integrals in N=4 super Yang-Mills. One of our
motivations is to provide a tool for deriving analytical results for scattering
amplitudes in this theory. We show that the integrals needed for planar MHV
amplitudes up to two loops can be thought of as deriving from a single master
topology. The master integral satisfies our differential equations, and so do
most of the reduced integrals. A consequence of the differential equations is
that the integrals we discuss are not arbitrarily complicated transcendental
functions. For two specific two-loop integrals we give the full analytic
solution. The simplicity of the integrals appearing in the scattering
amplitudes in planar N=4 super Yang-Mills is strongly suggestive of a relation
to the conjectured underlying integrability of the theory. We expect these
differential equations to be relevant for all planar MHV and non-MHV
amplitudes. We also discuss possible extensions of our method to more general
classes of integrals.Comment: 39 pages, 8 figures; v2: typos corrected, definition of harmonic
polylogarithms adde
Analytic result for the two-loop six-point NMHV amplitude in N=4 super Yang-Mills theory
We provide a simple analytic formula for the two-loop six-point ratio
function of planar N = 4 super Yang-Mills theory. This result extends the
analytic knowledge of multi-loop six-point amplitudes beyond those with maximal
helicity violation. We make a natural ansatz for the symbols of the relevant
functions appearing in the two-loop amplitude, and impose various consistency
conditions, including symmetry, the absence of spurious poles, the correct
collinear behaviour, and agreement with the operator product expansion for
light-like (super) Wilson loops. This information reduces the ansatz to a small
number of relatively simple functions. In order to fix these parameters
uniquely, we utilize an explicit representation of the amplitude in terms of
loop integrals that can be evaluated analytically in various kinematic limits.
The final compact analytic result is expressed in terms of classical
polylogarithms, whose arguments are rational functions of the dual conformal
cross-ratios, plus precisely two functions that are not of this type. One of
the functions, the loop integral \Omega^{(2)}, also plays a key role in a new
representation of the remainder function R_6^{(2)} in the maximally helicity
violating sector. Another interesting feature at two loops is the appearance of
a new (parity odd) \times (parity odd) sector of the amplitude, which is absent
at one loop, and which is uniquely determined in a natural way in terms of the
more familiar (parity even) \times (parity even) part. The second
non-polylogarithmic function, the loop integral \tilde{\Omega}^{(2)},
characterizes this sector. Both \Omega^{(2)} and tilde{\Omega}^{(2)} can be
expressed as one-dimensional integrals over classical polylogarithms with
rational arguments.Comment: 51 pages, 4 figures, one auxiliary file with symbols; v2 minor typo
correction
Validation and justification of the phylum name Cryptomycota phyl. nov.
The recently proposed new phylum name Cryptomycota phyl. nov. is validly published in order to facilitate its use in future discussions of the ecology, biology, and phylogenetic relationships of the constituent organisms. This name is preferred over the previously tentatively proposed âRozellidaâ as new data suggest that the life-style and morphology of Rozella is not representative of the large radiation to which it and other Cryptomycota belong. Furthermore, taxa at higher ranks such as phylum are considered better not based on individual names of included genera, but rather on some special characteristics â in this case the cryptic nature of this group and that they were initially revealed by molecular methods rather than morphological discovery. If the group were later viewed as a member of a different kingdom, the name should be retained to indicate its fungal affinities, as is the practice for other fungal-like protist groups
Pre-Release Consumption of Methyl Eugenol Increases the Mating Competitiveness of Sterile Males of the Oriental Fruit Fly, Bactrocera dorsalis, in Large Field Enclosures
The sterile insect technique may be implemented to control populations of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), when environmental concerns preclude widespread use of chemical attractants or toxicants. The goal of the present study was to evaluate whether the mating competitiveness of sterile B. dorsalis males could be increased via pre-release feeding on methyl eugenol. Males of the oriental fruit fly are strongly attracted to this plant-borne compound, which they ingest and use in the synthesis of the sex pheromone. Previous studies conducted in the laboratory and small field-cages have shown that males given methyl eugenol produce a more attractive pheromone for females and have a higher mating success rate than males denied methyl eugenol. Here, levels of egg sterility were compared following the release of wild-like flies and either methyl eugenol-fed (treated) or methyl eugenol-deprived (control) sterile males in large field enclosures at four over flooding ratios ranging from 5:1 to 60:1 (sterile: wild-like males). Treated sterile males were fed methyl eugenol for 1â4 h (depending on the over flooding ratio tested) 3 d prior to release. Eggs were dissected from introduced fruits (apples), incubated in the laboratory, and scored for hatch rate. The effect of methyl eugenol was most pronounced at lower over flooding ratios. At the 5:1 and 10:1 over flooding ratios, the level of egg sterility observed for treated, sterile males was significantly greater than that observed for control, sterile males. In addition, the incidence of egg sterility reported for treated sterile males at these lower over flooding ratios was similar to that noted for treated or control sterile males at the 30:1 or 60:1 over flooding ratios. This latter result, in particular, suggests that pre-release feeding on methyl eugenol allows for a reduction in the number of sterile flies that are produced and released, thus increasing the cost-effectiveness of the sterile insect technique
Therapeutic Radionuclides: Making the Right Choice
Recently, there has been a resurgence of interest in nuclear medicine therapeutic procedures. Using unsealed sources for therapy is not a new concept; it has been around since the beginnings of nuclear medicine. Treatment of thyroid disorders with radioiodine is a classic example. The availability of radionuclides with suitable therapeutic properties for specific applications, as well as methods for their selective targeting to diseased tissue have, however, remained the main obstacles for therapy to assume a more widespread role in nuclear medicine. Nonetheless, a number of new techniques that have recently emerged, (e.g., tumor therapy with radiolabeled monoclonal antibodies, treatment of metastatic bone pain, etc.) appear to have provided a substantial impetus to research on production of new therapeutic radionuclides. Although there are a number of new therapeutic approaches requiring specific radionuclides, only selected broad areas will be used as examples in this article
Wilson Loop Renormalization Group Flows
The locally BPS Wilson loop and the pure gauge Wilson loop map under AdS/CFT
duality to string world-sheet boundaries with standard and alternate
quantizations of the world-sheet fields. This implies an RG flow between the
two operators, which we verify at weak coupling. Many additional loop operators
exist at strong coupling, with a rich pattern of RG flows.Comment: 10 p, 2 figures. v3: Title change, expanded treatment of RG flow
- âŠ