80 research outputs found

    Accelerated Multi-Organization Conflict Resolution

    Get PDF
    In this paper, we discuss two situations where two organizations with different aims recognized the dysfunctionality of their relationship. In each of these cases, which were long running (6–8 months), the organizations had worked hard to resolve this dysfunctionality, and conflict, by organizing off-site meetings designed to resolve the conflict. These 1-day meetings failed. Subsequently Group Support System workshops were used for 1 day workshops and in each case the conflict was essentially resolved within 55 min. The research reported in this paper seeks to answer the question: what happened in these cases that led to a resolution of the conflict in such a short time period, given other attempts had failed? Specifically the paper explores the impact of the GSS used to facilitate two organizations seeking to resolve a conflictual situation

    Paleotemperature Proxies from Leaf Fossils Reinterpreted in Light of Evolutionary History

    Get PDF
    Present-day correlations between leaf physiognomic traits (shape and size) and climate are widely used to estimate paleoclimate using fossil floras. For example, leaf-margin analysis estimates paleotemperature using the modern relation of mean annual temperature (MAT) and the site-proportion of untoothed-leaf species (NT). This uniformitarian approach should provide accurate paleoclimate reconstructions under the core assumption that leaf-trait variation principally results from adaptive environmental convergence, and because variation is thus largely independent of phylogeny it should be constant through geologic time. Although much research acknowledges and investigates possible pitfalls in paleoclimate estimation based on leaf physiognomy, the core assumption has never been explicitly tested in a phylogenetic comparative framework. Combining an extant dataset of 21 leaf traits and temperature with a phylogenetic hypothesis for 569 species-site pairs at 17 sites, we found varying amounts of non-random phylogenetic signal in all traits. Phylogenetic vs. standard regressions generally support prevailing ideas that leaf-traits are adaptively responding to temperature, but wider confidence intervals, and shifts in slope and intercept, indicate an overall reduced ability to predict climate precisely due to the non-random phylogenetic signal. Notably, the modern-day relation of proportion of untoothed taxa with mean annual temperature (NT-MAT), central in paleotemperature inference, was greatly modified and reduced, indicating that the modern correlation primarily results from biogeographic history. Importantly, some tooth traits, such as number of teeth, had similar or steeper slopes after taking phylogeny into account, suggesting that leaf teeth display a pattern of exaptive evolution in higher latitudes. This study shows that the assumption of convergence required for precise, quantitative temperature estimates using present-day leaf traits is not supported by empirical evidence, and thus we have very low confidence in previously published, numerical paleotemperature estimates. However, interpreting qualitative changes in paleotemperature remains warranted, given certain conditions such as stratigraphically closely-spaced samples with floristic continuity

    Dark Energy Survey Y3 results: Blending shear and redshift biases in image simulations

    Get PDF
    As the statistical power of galaxy weak lensing reaches per cent level precision, large, realistic, and robust simulations are required to calibrate observational systematics, especially given the increased importance of object blending as survey depths increase. To capture the coupled effects of blending in both shear and photometric redshift calibration, we define the effective redshift distribution for lensing, nγ(z), and describe how to estimate it using image simulations. We use an extensive suite of tailored image simulations to characterize the performance of the shear estimation pipeline applied to the Dark Energy Survey (DES) Year 3 data set. We describe the multiband, multi-epoch simulations, and demonstrate their high level of realism through comparisons to the real DES data. We isolate the effects that generate shear calibration biases by running variations on our fiducial simulation, and find that blending-related effects are the dominant contribution to the mean multiplicative bias of approximately −2rmpercent-2{{ rm per cent}}. By generating simulations with input shear signals that vary with redshift, we calibrate biases in our estimation of the effective redshift distribution, and demonstrate the importance of this approach when blending is present. We provide corrected effective redshift distributions that incorporate statistical and systematic uncertainties, ready for use in DES Year 3 weak lensing analyses

    Dark Energy Survey year 3 results: Constraints on cosmological parameters and galaxy-bias models from galaxy clustering and galaxy-galaxy lensing using the redMaGiC sample

    Get PDF
    We constrain cosmological parameters and galaxy-bias parameters using the combination of galaxy clustering and galaxy-galaxy lensing measurements from the Dark Energy Survey (DES) year-3 data. We describe our modeling framework and choice of scales analyzed, validating their robustness to theoretical uncertainties in small-scale clustering by analyzing simulated data. Using a linear galaxy-bias model and redMaGiC galaxy sample, we obtain 10% constraints on the matter density of the Universe. We also implement a nonlinear galaxy-bias model to probe smaller scales that includes parametrization based on hybrid perturbation theory and find that it leads to a 17% gain in cosmological constraining power. We perform robustness tests of our methodology pipeline and demonstrate stability of the constraints to changes in the theory model. Using the redMaGiC galaxy sample as foreground lens galaxies and adopting the best-fitting cosmological parameters from DES year-1 data, we find the galaxy clustering and galaxy-galaxy lensing measurements to exhibit significant signals akin to decorrelation between galaxies and mass on large scales, which is not expected in any current models. This likely systematic measurement error biases our constraints on galaxy bias and the S8 parameter. We find that a scale-, redshift-and sky-Area-independent phenomenological decorrelation parameter can effectively capture this inconsistency between the galaxy clustering and galaxy-galaxy lensing. We trace the source of this correlation to a color-dependent photometric issue and minimize its impact on our result by changing the selection criteria of redMaGiC galaxies. Using this new sample, our constraints on the S8 parameter are consistent with previous studies and we find a small shift in the ωm constraints compared to the fiducial redMaGiC sample. We infer the constraints on the mean host-halo mass of the redMaGiC galaxies in this new sample from the large-scale bias constraints, finding the galaxies occupy halos of mass approximately 1.6×10 13 M⊙/h

    Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to data calibration

    Get PDF
    This work, together with its companion paper, Secco, Samuroff et al. [Phys. Rev. D 105, 023515 (2022)PRVDAQ2470-001010.1103/PhysRevD.105.023515], present the Dark Energy Survey Year 3 cosmic-shear measurements and cosmological constraints based on an analysis of over 100 million source galaxies. With the data spanning 4143 deg2 on the sky, divided into four redshift bins, we produce a measurement with a signal-to-noise of 40. We conduct a blind analysis in the context of the Lambda-Cold Dark Matter (ΛCDM) model and find a 3% constraint of the clustering amplitude, S8σ8(ωm/0.3)0.5=0.759-0.023+0.025. A ΛCDM-Optimized analysis, which safely includes smaller scale information, yields a 2% precision measurement of S8=0.772-0.017+0.018 that is consistent with the fiducial case. The two low-redshift measurements are statistically consistent with the Planck Cosmic Microwave Background result, however, both recovered S8 values are lower than the high-redshift prediction by 2.3σ and 2.1σ (p-values of 0.02 and 0.05), respectively. The measurements are shown to be internally consistent across redshift bins, angular scales and correlation functions. The analysis is demonstrated to be robust to calibration systematics, with the S8 posterior consistent when varying the choice of redshift calibration sample, the modeling of redshift uncertainty and methodology. Similarly, we find that the corrections included to account for the blending of galaxies shifts our best-fit S8 by 0.5σ without incurring a substantial increase in uncertainty. We examine the limiting factors for the precision of the cosmological constraints and find observational systematics to be subdominant to the modeling of astrophysics. Specifically, we identify the uncertainties in modeling baryonic effects and intrinsic alignments as the limiting systematics

    Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. I. Construction of CMB lensing maps and modeling choices

    Get PDF
    Joint analyses of cross-correlations between measurements of galaxy positions, galaxy lensing, and lensing of the cosmic microwave background (CMB) offer powerful constraints on the large-scale structure of the Universe. In a forthcoming analysis, we will present cosmological constraints from the analysis of such cross-correlations measured using Year 3 data from the Dark Energy Survey (DES), and CMB data from the South Pole Telescope (SPT) and Planck. Here we present two key ingredients of this analysis: (1) an improved CMB lensing map in the SPT-SZ survey footprint and (2) the analysis methodology that will be used to extract cosmological information from the cross-correlation measurements. Relative to previous lensing maps made from the same CMB observations, we have implemented techniques to remove contamination from the thermal Sunyaev Zel'dovich effect, enabling the extraction of cosmological information from smaller angular scales of the cross-correlation measurements than in previous analyses with DES Year 1 data. We describe our model for the cross-correlations between these maps and DES data, and validate our modeling choices to demonstrate the robustness of our analysis. We then forecast the expected cosmological constraints from the galaxy survey-CMB lensing auto and cross-correlations. We find that the galaxy-CMB lensing and galaxy shear-CMB lensing correlations will on their own provide a constraint on S8=σ8ωm/0.3 at the few percent level, providing a powerful consistency check for the DES-only constraints. We explore scenarios where external priors on shear calibration are removed, finding that the joint analysis of CMB lensing cross-correlations can provide constraints on the shear calibration amplitude at the 5% to 10% level

    Detection of the significant impact of source clustering on higher-order statistics with DES Year 3 weak gravitational lensing data

    Get PDF
    We measure the impact of source galaxy clustering on higher-order summary statistics of weak gravitational lensing data. By comparing simulated data with galaxies that either trace or do not trace the underlying density field, we show this effect can exceed measurement uncertainties for common higher-order statistics for certain analysis choices. We evaluate the impact on different weak lensing observables, finding that third moments and wavelet phase harmonics are more affected than peak count statistics. Using Dark Energy Survey Year 3 data we construct null tests for the source-clustering-free case, finding a p-value of p = 4 × 10−3 (2.6σ) using third-order map moments and p = 3 × 10−11 (6.5σ) using wavelet phase harmonics. The impact of source clustering on cosmological inference can be either be included in the model or minimized through ad-hoc procedures (e.g. scale cuts). We verify that the procedures adopted in existing DES Y3 cosmological analyses were sufficient to render this effect negligible. Failing to account for source clustering can significantly impact cosmological inference from higher-order gravitational lensing statistics, e.g. higher-order N-point functions, wavelet-moment observables, and deep learning or field level summary statistics of weak lensing maps

    Dark Energy Survey Year 3 results: Exploiting small-scale information with lensing shear ratios

    Get PDF
    Using the first three years of data from the Dark Energy Survey (DES), we use ratios of small-scale galaxy-galaxy lensing measurements around the same lens sample to constrain source redshift uncertainties, intrinsic alignments and other systematics or nuisance parameters of our model. Instead of using a simple geometric approach for the ratios as has been done in the past, we use the full modeling of the galaxy-galaxy lensing measurements, including the corresponding integration over the power spectrum and the contributions from intrinsic alignments and lens magnification. We perform extensive testing of the small-scale shear-ratio (SR) modeling by studying the impact of different effects such as the inclusion of baryonic physics, nonlinear biasing, halo occupation distribution descriptions and lens magnification, among others, and using realistic N-body simulations of the DES data. We validate the robustness of our constraints in the data by using two independent lens samples with different galaxy properties, and by deriving constraints using the corresponding large-scale ratios for which the modeling is simpler. The results applied to the DES Y3 data demonstrate how the ratios provide significant improvements in constraining power for several nuisance parameters in our model, especially on source redshift calibration and intrinsic alignments. For source redshifts, SR improves the constraints from the prior by up to 38% in some redshift bins. Such improvements, and especially the constraints it provides on intrinsic alignments, translate to tighter cosmological constraints when shear ratios are combined with cosmic shear and other 2pt functions. In particular, for the DES Y3 data, SR improves S8 constraints from cosmic shear by up to 31%, and for the full combination of probes (3×2pt) by up to 10%. The shear ratios presented in this work are used as an additional likelihood for cosmic shear, 2×2pt and the full 3×2pt in the fiducial DES Y3 cosmological analysis
    • …
    corecore