17 research outputs found

    A non-cell autonomous mouse model of CNS haemangioblastoma mediated by mutant KRAS

    Get PDF
    Haemangioblastoma is a rare malignancy of the CNS where vascular proliferation causes lesions due to endothelial propagation. We found that conditionally expressing mutant Kras, using Rag1-Cre, gave rise to CNS haemangioblastoma in the cortex and cerebellum in mice that present with highly vascular tumours with stromal cells similar to human haemangioblastomas. The aberrant haemangioblastoma endothelial cells do not express mutant Kras but rather the mutant oncogene is expressed in CNS interstitial cells, including neuronal cells and progeny. This demonstrates a non-cell autonomous origin of this disease that is unexpectedly induced via Rag1-Cre expression in CNS interstitial cells. This is the first time that mutant RAS has been shown to stimulate non-cell autonomous proliferation in malignancy and suggests that mutant RAS can control endothelial cell proliferation in neo-vascularisation when expressed in certain cells.This work was supported by grants from the Medical Research Council (MR/J000612/1), the Wellcome Trust (099246/Z/12/Z) and Bloodwise (12051)

    Extensions of MADM (Mosaic Analysis with Double Markers) in Mice

    Get PDF
    Mosaic Analysis with Double Markers (MADM) is a method for generating genetically mosaic mice, in which sibling mutant and wild-type cells are labeled with different fluorescent markers. It is a powerful tool that enables analysis of gene function at the single cell level in vivo. It requires transgenic cassettes to be located between the centromere and the mutation in the gene of interest on the same chromosome. Here we compare procedures for introduction of MADM cassettes into new loci in the mouse genome, and describe new approaches for expanding the utility of MADM. We show that: 1) Targeted homologous recombination outperforms random transgenesis in generation of reliably expressed MADM cassettes, 2) MADM cassettes in new genomic loci need to be validated for biallelic and ubiquitous expression, 3) Recombination between MADM cassettes on different chromosomes can be used to study reciprocal chromosomal deletions/duplications, and 4) MADM can be modified to permit transgene expression by combining it with a binary expression system. The advances described in this study expand current, and enable new and more versatile applications of MADM

    T cell tumorigenesis in Lmo2 transgenic mice is independent of V-D-J recombinase activity.

    No full text
    The LMO2 gene is involved in T-cell acute leukaemia (T-ALL) in children with chromosomal translocations t(11;14)(p13;q11) or (7;11)(q35;p13). Transgenic expression of Lmo2 in T cells results in clonal tumours with long latency indicating that mutations in other genes are required for the development of overt tumours. RAG V-D-J recombinase can mediate genetic transposition and thus might create the secondary mutations necessary for T-ALL. Tumour development was compared in Lmo2 transgenic mice in the presence or absence of the Rag1 gene. No difference was observed in the rate of tumour formation nor in tumour histology in Lmo2-transgenic mice with or without Rag1. We conclude that, in this model, RAG recombinase is not a major mediator of mutations needed for T cell tumorigenesis and that antigen binding to alpha-beta or to gamma-delta T cell receptor does not play a role in tumorigenesis. The driving force behind the mutational process involved in this transgenic model remains obscure

    Leukaemia lineage specification caused by cell-specific Mll-Enl translocations.

    No full text
    Chromosomal translocations involving the Mixed-Lineage Leukaemia (MLL) gene underlie many human leukaemias and MLL rearrangements are found in both acute myelogenous and acute lymphoblastic leukaemias. To assess the functionally relevant haematopoietic cell contexts for MLL fusions to be tumorigenic, we have generated different lines of mice in which de novo Mll-associated translocations occur. In these models, reciprocal chromosomal translocations occur by means of Cre-loxP-mediated recombination (translocator mice) in different cells of the haematopoietic system (namely haematopoietic stem cells, semi-committed progenitors or committed T or B cells). Translocations between Mll and Enl cause myeloid neoplasias, initiating in stem cells or progenitors while no tumours arose when the translocation was restricted to the B-cell compartment. Despite the absence of tumorigenesis, Mll-Enl translocations did occur and Mll-Enl fusion mRNA was expressed in B-cell-restricted translocators. A permissive cellular environment is therefore required for oncogenicity of Mll-associated translocations since the occurrence of Mll-Enl does not promote unrestricted proliferation in all haematopoietic cellular contexts, consistent with a specific instructive role of the MLL-fusion proteins in leukaemogenesis

    An antibody inhibitor of the LMO2-protein complex blocks its normal and tumorigenic functions.

    No full text
    The LIM-domain protein LMO2 is a T-cell oncogenic protein first recognized by gene activation through chromosomal translocations, but it is also responsible for leukaemias arising as secondary, adverse effects in an X-SCID gene therapy trial. There are no specific reagents currently available to analyse the LMO2 multiprotein complex or to combat LMO2-dependent leukaemias. Accordingly, we have isolated an anti-LMO2 single chain Fv antibody fragment to determine if intracellular interference with LMO2-protein complexes can avert LMO2-dependent functions in normal and cancer settings. The anti-LMO2 single chain Fv, obtained using Intracellular Antibody Capture (IAC) technology, is specific for LMO2 among the LIM-only protein family and binds LMO2 through the third and fourth LIM fingers. Using vector-mediated expression of anti-LMO2 scFv, we show inhibition of Lmo2-dependent erythropoiesis but not endothelial development. We also demonstrate inhibition of Lmo2-dependent leukaemia in a mouse T-cell tumourigenesis transplantation assay with retroviral-mediated expression of anti-LMO2 scFv. Our studies establish that interference with the LMO2 multiprotein complex inhibits both normal and tumourigenic roles. The antibody fragment is a tool for dissecting LMO2 function in haematopoiesis and leukaemia and is a lead for development of therapeutics against LMO2-dependent T-ALL

    Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer.

    Get PDF
    The etiology of human tumors often involves chromosomal translocations. Models that emulate translocations are essential to understanding the determinants of frank malignancy, those dictating the restriction of translocations to specific lineages, and as a basis for development of rational therapeutic methods. We demonstrate that developmentally regulated Cre-loxP-mediated interchromosomal recombination between the Mll gene, whose human counterpart is involved in a spectrum of leukemias, and the Enl gene creates reciprocal chromosomal translocations that cause myeloid tumors. There is a rapid onset and high penetrance of leukemogenesis in these translocator mice, and high proportions of cells carrying chromosomal translocations can be found in bone marrow as early as 12 days after birth. This de novo strategy is a direct recapitulation of naturally occurring human cancer-associated translocations

    Induction of p53 and up-regulation of the p53 pathway in the human 5q- syndrome.

    No full text
    We have demonstrated induction of p53 and up-regulation of the p53 pathway in the human 5q– syndrome. This most probably results from haploinsufficiency of the ribosomal gene RPS14. The ribosome biogenesis checkpoint that results in activation of p53 protein and up-regulation of the p53 pathway offers a new potential therapeutic target in the human 5q– syndrome. However, this will be an option only if this intervention does not abrogate the critical tumor suppressor function of p5

    A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome.

    No full text
    The identification of the genes associated with chromosomal translocation breakpoints has fundamentally changed understanding of the molecular basis of hematological malignancies. By contrast, the study of chromosomal deletions has been hampered by the large number of genes deleted and the complexity of their analysis. We report the generation of a mouse model for human 5q- syndrome using large-scale chromosomal engineering. Haploinsufficiency of the Cd74-Nid67 interval (containing Rps14, encoding the ribosomal protein S14) caused macrocytic anemia, prominent erythroid dysplasia and monolobulated megakaryocytes in the bone marrow. These effects were associated with defective bone marrow progenitor development, the appearance of bone marrow cells expressing high amounts of the tumor suppressor p53 and increased bone marrow cell apoptosis. Notably, intercrossing with p53-deficient mice completely rescued the progenitor cell defect, restoring common myeloid progenitor and megakaryocytic-erythroid progenitor, granulocyte-monocyte progenitor and hematopoietic stem cell bone marrow populations. This mouse model suggests that a p53-dependent mechanism underlies the pathophysiology of the 5q- syndrome
    corecore