2,838 research outputs found

    Libraries and the management of research data

    Get PDF
    A discussion of the role of university libraries in the management of digital research data outputs. Reviews some of the recent history of progress in this area from a UK perspective, with reference to international developments

    Micromachined Millimetre-Wave Passive Components at 38 and 77 GHz

    Get PDF
    A precision micro-fabrication technique has been developed for millimetre-wave components of air-filled three-dimensional structures, such as rectangular coaxial lines or waveguides. The devices are formed by bonding several layers of micromachining defined slices with a thickness of a few hundred micrometres. The slices are thickphotoresist SU8 defined by photolithography, or silicon with a pattern defined by deep reactive ion etching; both are coated with gold by evaporation. The process is simple, and low-cost, as compared with conventional precision metal machining, but yields mm-wave components with good performance. The components are light weight and truly airfilled with no dielectric support. This paper reviews several of these micromachined mm-wave components at 38 and 77 GHz for communications and radar applications

    Public views on the donation and use of human biological samples in biomedical research: a mixed methods study

    Get PDF
    Objective A mixed methods study exploring the UK general public's willingness to donate human biosamples (HBSs) for biomedical research.<p></p> Setting Cross-sectional focus groups followed by an online survey.<p></p> Participants Twelve focus groups (81 participants) selectively sampled to reflect a range of demographic groups; 1110 survey responders recruited through a stratified sampling method with quotas set on sex, age, geographical location, socioeconomic group and ethnicity.<p></p> Main outcome measures (1) Identify participants’ willingness to donate HBSs for biomedical research, (2) explore acceptability towards donating different types of HBSs in various settings and (3) explore preferences regarding use and access to HBSs.<p></p> Results 87% of survey participants thought donation of HBSs was important and 75% wanted to be asked to donate in general. Responders who self-reported having some or good knowledge of the medical research process were significantly more likely to want to donate (p<0.001). Reasons why focus group participants saw donation as important included: it was a good way of reciprocating for the medical treatment received; it was an important way of developing drugs and treatments; residual tissue would otherwise go to waste and they or their family members might benefit. The most controversial types of HBSs to donate included: brain post mortem (29% would donate), eyes post mortem (35%), embryos (44%), spare eggs (48%) and sperm (58%). Regarding the use of samples, there were concerns over animal research (34%), research conducted outside the UK (35%), and research conducted by pharmaceutical companies (56%), although education and discussion were found to alleviate such concerns.<p></p> Conclusions There is a high level of public support and willingness to donate HBSs for biomedical research. Underlying concerns exist regarding the use of certain types of HBSs and conditions under which they are used. Improved education and more controlled forms of consent for sensitive samples may mitigate such concerns.<p></p&gt

    Skin friction at the interface between hands and sports equipment

    Get PDF
    The friction between the finger pad/palm and items of sports equipment strongly influences how well an athlete is able to perform. It not only determines how well equipment can be gripped and manipulated, but also how the equipment feels to use and the perceived level of performance. In this paper various fundamental aspects of finger pad friction are reviewed, including the effects of applied force, skin moisture, material, surface texture etc., and the influence that they have on friction mechanisms such as adhesion, deformation, interlocking and hysteresis. A number of applied case studies are then outlined. The first is rugby balls and the effect the ball surface pimple pattern has on friction. Initially high speed video was used to establish how the hand interacts with a ball. Friction tests were then carried out with different hand conditions and pimple patterns and the link between friction and pass accuracy was explored. The second study relates to friction modifiers used in sports such as rock climbing and athletics. These can be affected by hand and environmental conditions so a focus was placed on tests with moist hands or wet surfaces. Finally Frisbee interactions were investigated. The impact of loss of feel as a result of wearing gloves was studied to see if any improvements in wet conditions with gloves were offset by the reduced feedback from the Frisbee interface. The fundamentals of skin tribology can play a key role in developing optimised sports equipment, gaps still exist, however, in the understanding and modelling of surface texture and how important feel/comfort are, which are both important for sports equipment design

    Impact of tidal-stream arrays in relation to the natural variability of sedimentary processes

    Get PDF
    AbstractTidal Energy Converter (TEC) arrays are expected to reduce tidal current speeds locally, thus impacting sediment processes, even when positioned above bedrock, as well as having potential impacts to nearby offshore sand banks. Furthermore, the tidal dissipation at potential TEC sites can produce high suspended sediment concentrations (turbidity maxima) which are important for biological productivity. Yet few impact assessments of potential TEC sites have looked closely at sediment dynamics beyond local scouring issues. It is therefore important to understand to what extent exploitation of the tidal energy resource will affect sedimentary processes, and the scale of this impact is here assessed in relation to natural variability. At one such site in the Irish Sea that is highly attractive for the deployment of TEC arrays, we collect measurements of sediment type and bathymetry, apply a high resolution unstructured morphodynamic model, and a spectral wave model in order to quantify natural variability due to tidal and wave conditions. We then simulate the impacts of tidal-stream energy extraction using the morphodynamic model. Our results suggest that the sedimentary impacts of ‘first generation’ TEC arrays (i.e. less than 50 MW), at this site, are within the bounds of natural variability and are, therefore, not considered detrimental to the local environment. Yet we highlight potential environmental issues and demonstrate how impact assessments at other sites could be investigated

    Tidal energy leasing and tidal phasing

    Get PDF
    In addition to technical and economic constraints, tidal energy leasing is generally governed by demand for sites which contain the highest tidal streams, and does not take into account the phase relationship (i.e. the time lag) between sites. Here, the outputs of a three-dimensional tidal model are analysed to demonstrate that there is minimal phase diversity among the high tidal stream regions of the NW European shelf seas. It is therefore possible, under the current leasing system, that the electricity produced by the first generation of tidal stream arrays will similarly be in phase. Extending the analysis to lower tidal stream regions, we demonstrate that these lower energy sites offer more potential for phase diversity, with a mean phase difference of 1.25 h, compared to the phase of high energy sites, and hence more scope for supplying firm power to the electricity grid. We therefore suggest that a state-led leasing strategy, favouring the development of sites which are complementary in phase, and not simply sites which experience the highest current speeds, would encourage a sustainable tidal energy industry

    An assessment of the performance of grip enhancing agents used in sports applications

    Get PDF
    The performances of four grip enhancing agents, powdered and liquid chalk, rosin and Venice turpentine, were assessed using a bespoke finger friction rig and compared against an agent-free finger. The effectiveness of these agents was measured in dry, damp and wet conditions, to simulate the different environments in which the agents are used. The tests were first done on a polished steel surface and then the powdered and liquid chalk and agent-free finger were tested on sandstone. The tests on the steel showed that in a dry condition, only the Venice turpentine significantly increased the coefficient of friction, compared to no application of agent, with the rosin and powdered chalk actually decreasing the coefficient of friction. It is thought that the reduction in the coefficient of friction is caused by the solid particles acting as a lubricant between the two surfaces. When the fingers were wet, only the granular powder-based agents increased the coefficient of friction. This is because the Venice turpentine cannot adhere well to a wet finger, and therefore is not as effective. When the surface is wet, there is very little difference between the agents due to the water separating the finger surface from the steel. The tests on the sandstone showed no real difference between the lubricants or the different conditions, except for the dry, chalk-free finger, which had a decreased coefficient of friction due to the lubricating properties of the sandstone particles. These results highlight that the use of grip enhancing agents should take into account the moisture in the contact, as in dry conditions, the grip may be optimum when there is no agent used. It also shows that in different sports, different grip enhancing agents should be used
    • …
    corecore