144 research outputs found

    Twisted k-graph algebras associated to Bratteli diagrams

    Get PDF
    Given a system of coverings of k-graphs, we show that the cohomology of the resulting (k+1)-graph is isomorphic to that of any one of the k-graphs in the system. We then consider Bratteli diagrams of 2-graphs whose twisted C*-algebras are matrix algebras over noncommutative tori. For such systems we calculate the ordered K-theory and the gauge-invariant semifinite traces of the resulting 3-graph C*-algebras. We deduce that every simple C*-algebra of this form is Morita equivalent to the C*-algebra of a rank-2 Bratteli diagram in the sense of Pask-Raeburn-R{\o}rdam-Sims.Comment: 28 pages, pictures prepared using tik

    Scalable Massively Parallel Artificial Neural Networks

    Full text link
    There is renewed interest in computational intelligence, due to advances in algorithms, neuroscience, and computer hardware. In addition there is enormous interest in autonomous vehicles (air, ground, and sea) and robotics, which need significant onboard intelligence. Work in this area could not only lead to better understanding of the human brain but also very useful engineering applications. The functioning of the human brain is not well understood, but enormous progress has been made in understanding it and, in particular, the neocortex. There are many reasons to develop models of the brain. Artificial Neural Networks (ANN), one type of model, can be very effective for pattern recognition, function approximation, scientific classification, control, and the analysis of time series data. ANNs often use the back-propagation algorithm for training, and can require large training times especially for large networks, but there are many other types of ANNs. Once the network is trained for a particular problem, however, it can produce results in a very short time. Parallelization of ANNs could drastically reduce the training time. An object-oriented, massively-parallel ANN (Artificial Neural Network) software package SPANN (Scalable Parallel Artificial Neural Network) has been developed and is described here. MPI was use

    Supernova Observation Via Neutrino-Nucleus Elastic Scattering in the CLEAN Detector

    Get PDF
    Development of large mass detectors for low-energy neutrinos and dark matter may allow supernova detection via neutrino-nucleus elastic scattering. An elastic-scattering detector could observe a few, or more, events per ton for a galactic supernova at 10 kpc (3.1×10203.1 \times 10^{20} m). This large yield, a factor of at least 20 greater than that for existing light-water detectors, arises because of the very large coherent cross section and the sensitivity to all flavors of neutrinos and antineutrinos. An elastic scattering detector can provide important information on the flux and spectrum of ΜΌ\nu_\mu and Μτ\nu_\tau from supernovae. We consider many detectors and a range of target materials from 4^4He to 208^{208}Pb. Monte Carlo simulations of low-energy backgrounds are presented for the liquid-neon-based Cryogenic Low Energy Astrophysics with Noble gases (CLEAN) detector. The simulated background is much smaller than the expected signal from a galactic supernova.Comment: 10 pages, 5 figures, submitted to Phys. Rev.

    Immune or genetic-mediated disruption of CASPR2 causes pain hypersensitivity due to enhanced primary afferent excitability

    Get PDF
    Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2(-/-)) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2(-/-) mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability

    Psychology and aggression

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd

    TOI 564 b and TOI 905 b: Grazing and Fully Transiting Hot Jupiters Discovered by TESS

    Get PDF
    We report the discovery and confirmation of two new hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS): TOI 564 b and TOI 905 b. The transits of these two planets were initially observed by TESS with orbital periods of 1.651 and 3.739 days, respectively. We conducted follow-up observations of each system from the ground, including photometry in multiple filters, speckle interferometry, and radial velocity measurements. For TOI 564 b, our global fitting revealed a classical hot Jupiter with a mass of MJ and a radius of RJ. Also a classical hot Jupiter, TOI 905 b has a mass of MJ and radius of RJ. Both planets orbit Sun-like, moderately bright, mid-G dwarf stars with V ∌ 11. While TOI 905 b fully transits its star, we found that TOI 564 b has a very high transit impact parameter of, making it one of only ∌20 known systems to exhibit a grazing transit and one of the brightest host stars among them. Therefore, TOI 564 b is one of the most attractive systems to search for additional nontransiting, smaller planets by exploiting the sensitivity of grazing transits to small changes in inclination and transit duration over a timescale of several years

    Advances in Agrobacterium-mediated plant transformation with enphasys on soybean

    Full text link

    An Eccentric Massive Jupiter Orbiting a Subgiant on a 9.5-day Period Discovered in the Transiting Exoplanet Survey Satellite Full Frame Images

    Get PDF
    We report the discovery of TOI-172 b from the Transiting Exoplanet Survey Satellite (TESS) mission, a massive hot Jupiter transiting a slightly evolved G star with a 9.48-day orbital period. This is the first planet to be confirmed from analysis of only the TESS full frame images, because the host star was not chosen as a two-minute cadence target. From a global analysis of the TESS photometry and follow-up observations carried out by the TESS Follow-up Observing Program Working Group, TOI-172 (TIC 29857954) is a slightly evolved star with an effective temperature of T eff = 5645 ± 50 K, a mass of M ∗ = 1.128-0.061 +0.065 M o, radius of R ∗ = 1.777-0.044 +0.047 R o, a surface gravity of log g ∗ = 3.993-0.028 +0.027, and an age of 7.4-1.5 +1.6. Its planetary companion (TOI-172 b) has a radius of R P = 0.965-0.029 +0.032 R J, a mass of M P = 5.42-0.20 +0.22 M J, and is on an eccentric orbit (e = 0.3806-0.0090 +0.0093 ). TOI-172 b is one of the few known massive giant planets on a highly eccentric short-period orbit. Future study of the atmosphere of this planet and its system architecture offer opportunities to understand the formation and evolution of similar systems
    • 

    corecore