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Abstract

We report the discovery of TOI-172 b from the Transiting Exoplanet Survey Satellite (TESS) mission, a massive
hot Jupiter transiting a slightly evolved G star with a 9.48-day orbital period. This is the first planet to be confirmed
from analysis of only the TESS full frame images, because the host star was not chosen as a two-minute cadence
target. From a global analysis of the TESS photometry and follow-up observations carried out by the TESS Follow-
up Observing Program Working Group, TOI-172 (TIC 29857954) is a slightly evolved star with an effective
temperature of Teff=5645±50K, a mass of Må=1.128 0.061

0.065
-
+ Me, radius of Rå=1.777 0.044

0.047
-
+ Re, a surface

gravity of log gå=3.993 0.028
0.027

-
+ , and an age of 7.4 Gyr1.5

1.6
-
+ . Its planetary companion (TOI-172 b) has a radius of

RP=0.965 0.029
0.032

-
+ RJ, a mass of MP=5.42 0.20

0.22
-
+ MJ, and is on an eccentric orbit (e 0.3806 0.0090

0.0093= -
+ ). TOI-172 b is
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one of the few known massive giant planets on a highly eccentric short-period orbit. Future study of the
atmosphere of this planet and its system architecture offer opportunities to understand the formation and evolution
of similar systems.

Key words: planetary systems – planets and satellites: detection – stars: individual (TIC 29857954)

Supporting material: data behind figure, machine-readable table

1. Introduction

In only three decades, the field of exoplanets has rapidly
expanded from its infancy to one of the largest and fastest research
areas in astrophysics. This is largely due to the success of both
ground-based and space-based efforts to discover new planets
using the transit and radial velocity (RV) techniques. With the
confirmation of thousands of new planets and the identification of
a few thousand more candidates, no survey has been more
influential to the field than the Kepler mission (Borucki et al.
2010). As the Kepler and repurposed K2(Howell et al. 2014)
missions have completed, we are now entering the next major
chapter in the field of exoplanets with the recent launch of the
Transiting Exoplanet Survey Satellite (TESS; Ricker et al. 2015).

Interestingly, we are still attempting to understand one of the
first types of planets ever discovered, hot Jupiters. It is
commonly believed that close-in giant planets formed farther
out in the protoplanetary disk and, through various mechan-
isms, migrated inward. These highly irradiated, Jovian-sized
planets orbit with periods �10 days, and typically do not have
nearby planetary companions (Steffen et al. 2012; Huang et al.
2016), suggesting that they might disrupt planet formation and
the orbits of any existing inner planets as they move inward.
However, the discovery of two small planets bracketing the
known hot Jupiter, WASP-47b (Becker et al. 2015), suggests
that some giant planets can migrate in a dynamically quiet
manner or even form in situ (Batygin et al. 2016; Huang et al.
2016). It has been found that giant planets discovered in more
distant orbits tend to have companions (e.g., Knutson et al.
2014; Huang et al. 2016). This possibly supports the idea that
their longer orbit allows them to form alongside smaller planets
in different parts of the inner disk.

If planetary migration occurs through the gas disk, it must take
place during the first ∼10 Myr while the gas is still around, and is
expected to result in low-eccentricity orbits (Haisch et al. 2001;
D’Angelo et al. 2003). However, migration may commonly be
influenced by gravitational interactions with other planets or stars.
These interactions can increase the planet’s orbital eccentricity
(known as high eccentricity migration; HEM) and lead to tidal
interactions at close approach to the host star that shrink and
circularize the orbit (Rasio & Ford 1996; Wu & Murray 2003;
Fabrycky & Tremaine 2007; Nagasawa & Ida 2011; Wu &
Lithwick 2011). For a Jupiter analog orbiting a Sun-like star on a
period of 0.5 to 10 days, the circularization timescale can range
from a few million years to over a hundred billion years
depending on the semimajor axis (see Equation 2 in Adams &
Laughlin 2006). Therefore, only long-period hot Jupiters (5–10
days) would retain any primordial eccentricity if HEM is the
underlying mechanism because they would not have had enough
time to circularize. This class of dynamically young giant planets,
for which the circularization timescales are longer than the
system’s current age (also referred to as tropical Jupiters; Yu et al.
2018), offers an opportunity to gain insight into the mechanisms
governing hot Jupiter evolution. Previous studies have tried to
place constraints on hot Jupiter migration mechanisms by

analyzing the eccentricities and orbital architectures of these
systems. For example, the orbits of dynamically young hot
Jupiters tend to be more eccentric on average, as would be
expected if at least a fraction of them have undergone eccentric
migration (Quinn et al. 2014; Bonomo et al. 2017). At the same
time, the paucity of highly eccentric migrating Jupiters places an
upper limit on the prevalence of HEM in the production of these
systems (Dawson et al. 2015). The presence of additional giant
planets exterior to hot Jupiters but inside the ice line is hard to
reconcile with migration via HEM (Schlaufman & Winn 2016),
though trends with host-star metallicity hint that disk migration
and subsequent planet–planet scattering could account for much
of the hot Jupiter population (Dawson & Murray-Clay 2013).
Indeed, it appears that no single migration channel can produce
the known population; a recent review of the relevant literature
suggests that the combination of two such mechanisms might be
able to explain the observations (Dawson & Johnson 2018).
Additional study of the dynamically young planets—and their
orbital architectures—can refine our understanding of how these
migration mechanisms work together to produce the population of
giant planets that we observe.
In this paper, we present the discovery in TESS full frame

images leading to follow-up photometry, and precision RV
measurements of a dynamically young, massive Jupiter in a
∼9.5-day eccentric orbit (0.38) around a subgiant. Addition-
ally, the evolutionary state of TOI-172 provides a reliable age.
The paper is organized in the following way. We present all
available observations of TOI-172in Section 2 (Table 1
presents the available information on TOI-172from the
literature). Our global analysis of all available observations
using EXOFASTv2 is described in Section 3. We discuss TOI-
172 b in the context of all known planets in Section 4,
presenting prospects on future follow-up. We summarize our
conclusions in Section 5.

2. Observations and Archival Data

2.1. TESS Photometry

TOI-172 fell on CCD4 of Camera1 of the TESS spacecraft
during its first sector of observations (2018 July 25–August
22), but it was not pre-selected for two-minute cadence
observations. After the data were downloaded from the
spacecraft, we processed the calibrated 30-minute cadence full
frame images (Jenkins et al. 2016) with the MIT Quick Look
Pipeline (QLP; C. Huang et al., in preparation). The QLP is a
lightweight tool for rapidly producing light curves and
identifying transits in all stars observed by TESS, not just
those selected for two-minute cadence observations. The QLP
extracts photometry by summing the flux within moving
circular apertures (following Huang et al. 2015), after using the
nebulosity filter37 to remove scattered background light from
the images. After producing light curves, the QLP searches for

37 Developed by M. Irwin: http://www.ukirt.hawaii.edu/publications/
newsletter/ukirtnewsletter2010spring.pdf.
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transits by calculating a box-least-squares periodogram (BLS;
Kovács et al. 2002), implementing high-pass filtering and BLS
period spacing following Vanderburg et al. (2016). We
detected a single repeating transit signal around TOI-172 with
a period of 9.48 days, a duration of 4.71 hr, and a flat-bottomed
shape (see Figure 1). We notified the community of the
discovery via the MIT TESS alerts portal38 (Ricker &
Vanderspek 2018).

Upon the public release of the processed Sector 1 full frame
images, we attempted to improve the light curve by extracting
photometry from a variety of differently shaped stationary
photometric apertures. After some experimentation, and using
archival images from the ESO/SERC Southern Sky Atlas
(SERC-J; taken in 1975) and the Anglo-Australian Observa-
tory Second Epoch Survey (AAO-SES; 1993) to check for
any additional stars nearby, we settled upon the irregularly

shaped aperture shown in Figure 2. The light curve extracted
from this aperture balanced high photometric precision with
minimal contamination from a nearby 12th magnitude star
(TIC 29857959) and minimal systematics related to TESSʼs
momentum dumps, when the spacecraft thrusters are fired to
reorient the spacecraft and allow the reaction wheels to be
spun down. We compared the transit depths from the light
curve extracted with the QLP and our simple aperture
photometry method, and found consistent results. We
proceeded in our analysis using the light curve produced
with simple aperture photometry, as it had slightly better
photometric precision. We manually removed 8 hours of data
(BJDTDB- 2457000=1338.4125 to 1338.0792) contaminated
by an asteroid passing through the photometric aperture, and
we clipped 4σ outliers from the light curve (see Figure 1). The
corresponding TESS light curve was flattened using a spline fit
with breakpoints every 0.5 days to divide out the best-fit
stellar variability (Vanderburg & Johnson 2014).

2.2. Ground-based Photometry from the TESS Follow-up
Observing Program Working Group

To rule out false positives, better constrain the ephemeris of
TOI-172 b, and measure the depth of the transit, we obtained
two photometric transit follow-up observations using the Las
Cumbres Observatory (LCO) telescope network (Brown et al.
2013).39 To predict the next possible transit events for TOI-
172that were observable, we used the TAPIR software
package (Jensen 2013). We used the AstroImageJ astro-
nomical observation analysis software to reduce all follow-up
photometric observations and perform aperture photometry to
extract the light curves. On UT 2018 September 22, we
observed the transit of TOI-172 b in the Sloan Digital Sky
Survey i′ filter using the 0.4 m LCO telescope located at the
Cerro Tololo Inter-American Observatory (CTIO) in Chile. The
0.4 m telescopes are equipped with SBIG STX6303 cameras
that have a 19′×29′field of view (FOV) and a 0 57 pixel
scale. On UT 2018 October 11, we observed the transit of TOI-
172 b in the z′ filter on the 1.0 m telescope at the McDonald
Observatory in Fort Davis, Texas. The 1.0 m telescope has a
Sinistro camera with a 16 5×26 5′FOV and a pixel scale of
0 389 pixel−1. In each case, an ingress of the transit of TOI-
172 b was observed on the target star. In both observations,
only an ingress was observable and the exposure time was 50 s.
These observations are consistent with what was observed by
TESS (see Figure 3). Therefore, the fading events are localized
to within 15″ of TOI-172.

2.3. Tillinghast Reflector Echelle Spectrograph (TRES)
Spectroscopy

Spectra of TOI-172were obtained on 27 occasions with a
resolving power of R ∼ 44000 using the TRES (Fűrész 2008)40

mounted on the 1.5 m Tillinghast Reflector at the Fred L.
Whipple Observatory (FLWO) on Mt. Hopkins, Arizona. For a
description of the reduction and RV extraction pipeline, see
Buchhave et al. (2010). Our procedure differed only in the
generation of the template used for cross-correlation. We
derived relative RVs by cross-correlating against the strongest
spectrum, and we shifted and median-combined the spectra to

Table 1
Literature and Measured Properties for TOI-172

Other Identifiers

TIC 29857954

TYC 6932-00301-1

2MASS J21063165-2641333

Parameter Description Value Source

αJ2000K R.A. K 21:06:31.65 1
δJ2000K decl.K −26:41:34.29 1
BTK Tycho BT mag.K 12.211±0.203 2
VTK Tycho VT mag.K 11.382±0.125 2
GK Gaia G mag.K 11.193±0.02 3, 4
TK TESS mag.K 10.711±0.019 4
JK 2MASS J mag.K 10.135±0.03 5, 6
HK 2MASS H mag.K 9.825±0.03 5, 6
KSK 2MASS KS mag.K 9.722±0.02 5, 6
WISE1K WISE1mag.K 9.673±0.03 7
WISE2K WISE2mag.K 9.718±0.03 7
WISE3K WISE3mag.K 9.763±0.052 7
WISE4K WISE4mag.K 8.529±0.516 7
μαK Gaia DR2 proper motionK −4.711±0.094 3, 4

in R.A. (mas yr−1)
μδK Gaia DR2 proper motionK −54.25±0.069 3, 4

in Decl. (mas yr−1)
vsiniåK Rotational velocity (km s−1)

K
5.1±0.5 Section 2.3

Fe H[ ]K Metallicity K 0.14±0.08 Section 2.3
TeffK Effective temperature (K) K 5640±50 Section 2.3

glog K Surface gravity (cgs)K 3.97±0.1 Section 2.3

πK Gaia parallax (mas) K 2.972±0.06a 3, 4
RVK Systemic radial K −6.247±0.081 Section 2.3

velocity (km s−1)
dK Distance (pc)K 336.47±6.79a 3, 4
UbK Space velocity (km s−1)K 26.24±0.46 Section 2.7
VK Space velocity (km s−1)K −71.52±1.68 Section 2.7
WK Space velocity (km s−1)K −1.31±0.27 Section 2.7

Notes.
a Values have been corrected for the −0.82 μ as an offset as reported by
Stassun & Torres (2018).
b U is in the direction of the Galactic center.
References:(1) Cutri et al. (2003);(2) Høg et al. (2000);Gaia Collaboration
et al. (2016);(3) Gaia Collaboration et al. (2018);(4) Stassun et al. (2018);
(5) Cutri et al. (2003); (6) Skrutskie et al. (2006); (7) Zacharias et al. (2017).

38 https://tess.mit.edu/alerts/

39 https://lco.global/
40 http://www.sao.arizona.edu/html/FLWO/60/TRES/GABORthesis.pdf
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produce a high signal-to-noise ratio template spectrum. We
then cross-correlated each observed spectrum against that
template to produce our final relative RVs, which are given in
Table 2 and shown in Figure 4. Bisector spans were calculated

for the TRES RVs using the technique described in Torres et al.
(2007). There are no correlations between the bisector spans
and the measured RV values and no scatter in the bisectors
beyond their uncertainties (which are small compared to the
RV variation), supporting the premise that TOI-172 is being
periodically transited or eclipsed. We also derive the absolute
RVs via cross-correlation against synthetic templates created
using Kurucz model atmospheres (Kurucz 1992). We calculate
the instrumental zero-point through nightly monitoring of RV
standards, which we place on the absolute RV scale of Nidever
et al. (2002). Using these observations, we determine the
absolute center-of-mass velocity of TOI-172to be −6.247±
0.081 km s−1(consistent with the absolute RV from Gaia DR2
of −5.89±0.67).
To determine the stellar parameters of TOI-172, we analyzed

the TRES spectra using the stellar parameter classification (SPC)
analysis package (Buchhave et al. 2012). From this analysis, we
estimated the effective temperature, metallicity, surface gravity,
and rotational velocity of TOI-172to be Teff=5640±50K,

glog =3.97±0.1, [m/H]=0.14±0.08, and v Isin *=
5.1±0.5 km s−1. We use the Teff and Fe H[ ] as a prior in the
EXOFASTv2 global fit (see Section 3).

2.4. FEROS Spectroscopy

We also obtained nine R=48000 spectra of TOI-
172between UT 2018 October 19 and November 5 using the

Figure 2. Archival imaging of TOI-172from the ESO/SERC Southern Sky Atlas (SERC-J; taken in 1976, first and second panels) and the Anglo-Australian
Observatory Second Epoch Survey (AAO-SES; 1994, 3rd panel). Fourth panel: the TESS image of TOI-172from Sector 1. The outline on each image corresponds to
the final chosen aperture used to extract the TESS light curve and the blue horizontal bar shows the image scale.

Figure 3. Phase-folded corrected TESS (blue), LCO i′ (yellow), and LCO z′
(green) light curves for TOI-172b. The full light curves are shown with filled
circles (TESS), open diamonds (LCO i′), and open triangles (LCO z′), and the
binned points are shown in color with error bars. The bin sizes are 45 minutes
for TESS and 11 minutes for the LCO observations. The red line corresponds to
the final EXOFASTv2 transit model.

Figure 1. Top: TESS 30-minute cadence light curve of TOI-172. Bottom: the flattened final TESS light curve used in the EXOFASTv2 fit. The observations are plotted
in open black circles, and the best-fit model from EXOFASTv2 is plotted in red. The gap in the middle is due to the gap between TESS orbits. The data between
BJDTDB- 2457000 of 1347 to 1350 were removed due to high scatter caused when the spacecraft thrusters are fired to reorient the spacecraft and allow the reaction
wheels to spin down. There is also a small 8 hr gap on BJDTDB- 2457000=1338 due to an asteroid crossing the aperture for TOI-172. The data used to create this
figure are available.
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Fiber-fed Extended Range Optical Spectrograph (FEROS;
Kaufer et al. 1999) mounted on the 2.2 m Max Planck
Gesellschaft (MPG) telescope at La Silla observatory in Chile.
Each spectrum achieved a signal-to-noise ratio of ∼60–100 per
spectral resolution element with exposure times of 600 s. The
instrumental drift was determined via comparison with a
simultaneous fiber illuminated with a ThAr+Ne lamp. The data
were processed with the CERES suite of echelle pipelines
(Brahm et al. 2017), which produce RVs and bisector spans in
addition to reduced spectra.

2.5. High-resolution Imaging

The relatively large 21″ pixels of TESS can result in
photometric contamination from nearby sources. These must be
accounted for to help rule out astrophysical false positives,
such as background eclipsing binaries, and to correct the
estimated planetary radius, initially derived from the diluted
transit in a blended light curve (Ciardi et al. 2015; Ziegler et al.
2018). We searched for close companions to TOI-172 with

speckle imaging on the 4.1 m Southern Astrophysical Research
(SOAR) telescope (Tokovinin 2018) on UT 2018 September
25, and again in better conditions on UT 2018 October 21. We
also obtained adaptive optics (AO) images of the target on UT
2018 November 14 using Gemini/NIRI. For these observa-
tions, nine science frames with an exposure time of 11 s each
were collected, with the telescope dithered between each frame.
For a subset of the frames, the raw data showed signs of
stripping, and so we discarded these frames and combined only
the six good frames for the analysis. We flat-field and sky
subtract the frames, using a sky background constructed by
median combining the dithered images, and then align and
combine the images. Figure 5 shows the 5σ detection limits
along with the AO image and speckle autocorrelation function.
A nearby star was detected in both the speckle and the AO

observations. The object is measured at a separation of 1 104
and an I-band contrast of 4.9 mag in the speckle images, and at
a separation of 1 099 and a Brγ contrast of 4.5 mag in the AO
images. This would result in a 371 au projected separation if
the companion is at the same distance as TOI-172. To test this

Table 2
Relative Radial Velocities for TOI-172

BJDTDB RV (m s−1) σRV (m s−1) Bisectors Instrument

2458410.551705 −5716.4 7.4 −1.0±10.0 FEROS
2458411.636884 −5739.9 9.9 6.0±13.0 FEROS
2458415.573206 −6562.4 8.6 −4.0±11.0 FEROS
2458418.552974 −6100.9 7.1 −18.0±10.0 FEROS
2458419.511487 −5865.5 7.9 38.0±11.0 FEROS
2458423.625864 −6654.1 8.3 −15.0±11.0 FEROS
2458424.531225 −6584.4 7.0 8.0±10.0 FEROS
2458425.597896 −6474.7 7.8 −7.0±11.0 FEROS
2458427.583262 −6149.8 7.4 −8.0±10.0 FEROS
2458429.542763 −5682.3 7.4 13.0±10.0 FEROS
2458430.614729 −5660.9 17.1 35.0±19.0 FEROS

2458376.730770 −593.6 27.0 13.3±19.0 TRES
2458390.710107 122.0 17.6 7.5±14.7 TRES
2458397.687254 −359.0 14.0 23.7±21.2 TRES
2458398.649461 −206.5 26.2 16.5±18.4 TRES
2458400.688662 230.9 22.4 8.5±21.9 TRES
2458409.670769 78.7 35.8 −56.7±33.4 TRES
2458413.668975 −569.8 43.0 −123.3±51.7 TRES
2458415.631951 −499.7 21.2 −5.3±22.6 TRES
2458416.639897 −373.8 30.9 13.6±29.0 TRES
2458417.601186 −194.6 23.1 1.0±21.6 TRES
2458418.659549 −8.6 24.7 14.1±28.5 TRES
2458419.685623 274.1 23.1 −10.4±35.5 TRES
2458420.614450 422.1 20.0 16.4±16.1 TRES
2458423.681839 −559.6 46.0 −9.8±23.3 TRES
2458424.653259 −520.3 26.9 25.1±25.3 TRES
2458426.597813 −250.4 22.6 10.5±25.6 TRES
2458428.594704 126.1 16.5 29.0±15.2 TRES
2458430.627687 291.2 19.2 37.342±2.3 TRES
2458438.602799 228.7 16.3 25.6±11.2 TRES
2458439.594972 403.1 16.6 −3.7±11.5 TRES
2458440.586306 −29.0 12.8 1.5±13.9 TRES
2458441.577056 −528.6 15.8 30.8±13.1 TRES
2458442.582383 −617.8 13.8 21.4±14.7 TRES
2458443.586964 −548.2 19.5 −15.5±22.6 TRES
2458444.630963 −471.7 39.9 −67.3±45.2 TRES
2458446.575996 −135.6 18.0 −33.4±18.1 TRES
2458447.572304 104.0 15.1 29.4±15.9 TRES

(This table is available in machine-readable form.)
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assumption, we use the broadband photometry in these
two bands for TOI-172(2MASS Ks=9.722 and USNO I′=
10.50; Monet et al. 2003) and the measured contrasts for the
companion (ΔBrγ=4.5 and ΔI=4.9) to derive the I−Ks

colors to be 0.78 and 1.18, respectively. Using these colors and
the MESA Isochrones and Stellar Tracks (MIST) stellar
evolution models (Paxton et al. 2011, 2013, 2015; Choi et al.
2016; Dotter 2016) at a log(age)=9.9 and a solar metallicity
(the nearest isochrone grid for TOI-172), we estimate a
photometric distance to TOI-172to be 318 pc. This is in close
agreement with the Gaia distance (336.47 pc). However,
assuming that the companion is on the main sequence, we
estimate its distance to be 1092 pc. When using other MIST
isochrone grids near the one adopted here, we only see a small
change in the derived photometric distances, not nearly enough
to explain the large difference measured between TOI-172and
the visual companion. This discrepancy suggests that the visual
companion is likely a background object, and not gravitation-
ally bound to the planet host. More data are required to confirm
this conclusion, either in the form of more photometry to
further characterize the spectral energy distribution (SED) of
the visual companion, or additional astrometric measurements
that confirm whether the two stars share common proper
motion.

The nearby star is not in Gaia DR2 or the TESS input catalog
(TIC), and consequently was not accounted for in the
contamination correction for TOI-172. It would take a 28.5%
deep eclipse of the nearby faint companion to cause the
blended depth seen in our aperture for TOI-172. The high
contrast between the two stars significantly reduces the
possibility that the nearby star is a background eclipsing binary
resulting in a false-positive planetary transit signal, as does
subsequent RV follow-up. We know that such a faint

companion is unable to significantly affect the RVs of TOI-
172because its contribution to the line profile is so small. While
it is true that even a faint companion could affect the RVs
slightly (even if it is below the noise level of the cross-
correlation function, CCF), this would only be at the level of
m s−1, not hundreds of m s−1 (TOI-172b k=517 m s−1, see
the analysis of blended CCFs in Buchhave et al. 2011).
Therefore, the spectroscopy proves that the planetary companion
orbits our target. Assuming the primary star is the planet host,
the additional flux from the nearby star results in only a
negligible correction upwards to the initially derived planet
radius (∼0.5%). We account for the blending from this nearby
companion in our global fit (see Section 3).

2.6. SED Analysis

Due to the presence of a nearby visual companion (see
Figure 5), we are unable to simultaneously fit the SED within
the EXOFASTv2 global analysis. Instead, we fit the combined
SED of the two stars separately from the joint transit and RV
analysis. The companion is blended in each of the broadband
photometric observations. From our analysis of the speckle
high-resolution imaging, we know that the nearby companion
has an I-band contrast of 4.9 mag and a Brγ contrast of 4.5
mag. Using the available photometric observations (see
Table 1), we fit the broadband SED of TOI-172 spanning
0.2–20μm (Figure 6). Assuming both stars have the same AV,
we use the ΔI and ΔBrγ contrasts to fit an SED to the nearby
companion. Each flux measurement is fit using the stellar
atmosphere models of Kurucz (1992). The distance for TOI-
172 is adopted from the measured Gaia parallax and we use the
SPC determined Teff , glog , and Fe H[ ] as Gaussian priors on
the fit. The only free parameter is the extinction (AV) which is
constrained at its upper bound by the maximum permitted line-
of-sight extinction from Schlegel et al. (1998). Our final best-fit
SED for TOI-172 has a reduced χ2 of 1.7, an extinction of
AV=0.08±0.04, and is shown in Figure 6. We integrated the
best-fit SED to determine the unextincted bolometric flux
(correcting for the contamination of the companion) received at
Earth, Fbol=8.16±0.19×10−10 erg s−1 cm−2. Using the
Gaia parallax (corrected for the systematic offset reported by
Stassun & Torres 2018) combined with the adopted Teff from
this analysis, we are able to measure the radius of TOI-172to
be Rå=1.787±0.049 R☉, after accounting for the presence
of the nearby companion seen in our high-resolution imaging.
We use this determined Rå as a prior for the EXOFASTv2
global analysis (see Section 3). Using our two-component SED
fit, we determine the flux contribution of the nearby companion
to be 0.91%(TESS), 0.46% (g′), and 1.07% (z′). We note that
the contribution from the companion would correspond to a
change in the measured TESS transit depth <1σ.

2.7. Location in the Galaxy, UVW Space Motion, and Galactic
Population

TOI-172 is located at αJ2000=21h06m31 65 and δJ2000=
−26°41′34 29, and from Gaia DR2 the parallax is 2.89±
0.06mas (applying the correction from Stassun & Torres 2018),
corresponding to a distance of 336.47±6.79pc ignoring the
Lutz–Kelker bias, which can cause measured parallaxes to be
larger than they are due to the assumption that the number of
observable stars increases as you go farther out (Lutz &
Kelker 1973). This results in TOI-172 being 217.6 pc below the

Figure 4. Top: RV measurements from FEROS (black) and TRES (blue).
Bottom: the RV measurements are phase-folded to the best determined period
by EXOFASTv2, 9.477 days. The EXOFASTv2 model is shown in red and the
residuals to the best fit are shown below each plot.
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Galactic plane. Combining the Gaia DR2 proper motions
of , 4.711 0.094, 54.25 0.069 mas yr 1m m = -  - a d

-( ) ( ) ,
the Gaia parallax, and the absolute RV as determined from the
TRES spectroscopy of −6.25±0.081 km s−1, we determine
the three-dimensional Galactic space motion of (U, V, W)=
(26.24±0.46, −71.52±1.68, −1.31±0.27) km s−1, where
positive U is in the direction of the Galactic center. We adopt
the Coşkunoǧlu et al. (2011) determination of the solar motion
with respect to the local standard of rest. The large asymmetric
drift (large negative V velocity) of the host star, combined with
its relatively large vertical height below the plane, suggests that
the star could potentially be a member of the thick disk. Indeed,
TOI-172 has a 43.9% chance of being in the thin disk
according to the classification scheme of Bensby et al. (2003).
However, this conclusion is somewhat contraindicated by the
slightly super-solar metallicity of the host star. We suggest a
measurement of the star’s detailed elemental abundances (in

particular [α/Fe]) could clarify the Galactic population to
which this star belongs.

3. EXOFASTv2 Global Fit for TOI-172

We use the EXOFASTv2 modeling suite (Eastman et al.
2013; Eastman 2017) to perform a simultaneous fit of the
available photometric and spectroscopic observations to gain a
full understanding of the TOI-172system. EXOFASTv2 is
heavily based on the original EXOFAST modeling suite
(Eastman et al. 2013) but provides flexibility in allowing the
user to simultaneously fit the SED, RV observations from
multiple instruments, and an arbitrary number of planets. We
simultaneously fit the full frame image TESS light curve (see
Section 2.1 and Figure 1), accounting for the effect of the 30-
minute cadence smearing on the light curve, the follow-up
ingresses observed by LCO, and the RV observations from
TRES and FEROS (see Figure 4). From our speckle
observations and two-component SED analysis, we found that
the nearby companion 1 1″ from TOI-172contributes 0.91%,
0.46%, and 1.07% of the total flux of the system in the TESS,
g′, and z′ bandpasses. To properly deblend the TESS and
follow-up observations from the previously unknown compa-
nion, we include these flux contributions with a 5% error as
Gaussian priors in the EXOFASTv2 global fit. This error has
no influence on the determined results.
Because accurate TESS pixel response function (PRF)

models are not yet available, we did not attempt to deblend
the TESS light curve from contaminating flux from TIC
29857959, the 12th magnitude star 75 arcsec northwest of TOI-
172 (see the discussion of this object in Section 2.1 and
Figure 2). We did, however, confirm that the neighbor’s
contaminating flux does not significantly dilute the transit depth
of TOI-172 b using several methods. First, we extracted the
light curve of TOI-172 from even smaller apertures than the
one shown in Figure 2, and found that decreasing the aperture
size had no effect on the depths of the transits (empirically
showing dilution is not an important factor). We also estimated
the local TESS PRF by examining TESS images of the nearby

Figure 5. Left: the I-band autocorrelation function from speckle using SOAR. The 5σ contrast curve for TOI-172 is shown by the black points. The black solid line is
the linear fit to the data for separations <0 2 and >0 2. The autocorrelation function is shown within the contrast curve plot. Right: the Brγ-band AO image and 5σ
contrast curve for TOI-172. The faint companion is detected in both data sets; in the speckle autocorrelation function (ACF), the white arrow points to the position of
the visual companion, which is mirrored in the ACF by the speckle processing.

Figure 6. Two-component SED fit for TOI-172. The blue points are the
predicted integrated fluxes and the red points are the observed values at
the corresponding passbands. The cyan points correspond to the I-band flux of
the nearby companion observed by SOAR (ΔI-band) and the Brγ flux observed
by Gemini. The width of the bandpasses are the horizontal red error bars and
the vertical errors represent the 1σ uncertainties. The final model fit is shown
by the solid line for TOI-172 (black) and its companion (red).
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isolated bright star (TIC 29857846). Inspection of these images
showed that in this region of the TESS FOV, about 75% of the
total flux falls within one pixel of the peak of the PRF, and
virtually all of the flux falls within about six pixels of the peak.
The photometric aperture for TOI-172 covers about 10% of the
detector area within six pixels of TIC 29857959, so only about
2.5% of the neighboring star’s total flux contaminates TOI-
172’s aperture. Since TIC 29857959 is about 1.3 magnitudes
fainter than TOI-172, the contamination from TIC 29857959
should only be about 1% the total flux in the aperture, much
smaller than the uncertainties on the depth of the transit, and
therefore negligible for the transit fitting.41 Finally, we note that
this estimate of about 1% contamination from TIC 29857959 is
consistent with the contamination estimated by version 7 of the
TIC using pre-launch estimates of the PRF.

To characterize the host star within the fit, we use the MIST
stellar evolution models (Paxton et al. 2011, 2013, 2015; Choi
et al. 2016; Dotter 2016). We enforce Gaussian priors on Teff
(5640±50 K) and Fe H[ ] (0.14±0.08) from the SPC
analysis of the TRES spectra (see Section 2.3). We also place
a Gaussian prior on R* of 1.783±0.049 R☉ from the two-
component SED analysis that included the Gaia DR2 parallax
(see Section 2.6). The final determined system parameters for
TOI-172are shown in Tables 3 and 4. Our determined Rå is
larger than what was listed in the TIC because version 7 of the
TIC did not have a Gaia parallax for TOI-172 and relied on
color relations that are unable to distinguish between dwarfs
and subgiants.

4. Discussion

Our global analysis indicates that TOI-172 has interesting
characteristics that warrant further study. Specifically, TOI-172
b is now one of only four known planets that has a highly
eccentric orbit (>0.3), a high planetary mass (>3 MJ),
relatively short period (<20 days), and is bright enough
(V<12) to be well suited for atmospheric characterization.42

The host star has a mass of Må=1.128 0.061
0.065

-
+ Me, a radius of

Rå=1.777 0.044
0.047

-
+ , a surface gravity of log gå=3.993 0.028

0.027
-
+ , and

an age of 7.4 Gyr1.5
1.6

-
+ . Therefore, TOI-172 appears to have just

evolved off the main sequence and to be entering into the
relatively short subgiant phase (see Figure 7).

4.1. Tidal Evolution and Irradiation History

To gain a better understanding of the past and future
evolution of TOI-172 b’s orbit, we use the latest version of
POET,43 where the results of our EXOFASTv2 global analysis
(see Section 3) are used as boundary conditions. POET is a tool
for calculating the evolution of a planetary orbit (circular
aligned) as a result of tidal dissipation (see Penev et al. 2014 for
a detailed description of the original version of POET). Here
we present an overview of the major changes that were used for
the analysis of TOI-172 b. The current version allows for
inclined and eccentric orbits, where either object in the binary
system can be a star or a planet. For the purposes of TOI-172,
the difference between a star and a planet is that stars evolve
(e.g., their radius changes) while planets do not. We assume
that the star follows the MIST evolutionary tracks used in the
EXOFASTv2 global model and that the rotation period of TOI-
172 is always longer than the orbital period of the planet. We
note that this is not strictly true, since stars similar to TOI-172
typically have a rotation period less than ∼9.5 days earlier in
their lifetime while they are on the main sequence. This
assumption only affects the very early part of the analysis (near
a zero-age main sequence), since the part of the evolution after
the star has started spinning slower than the orbit is determined
entirely by the present state of the system. We note that the
estimated v Isin * from the TRES spectroscopy suggests a
maximum rotation period of 17.6 days.
For TOI-172, orbital evolutionary tracks were calculated

for Qå=106, 107, and 108, and for each of those, QP=106,
107, and 108 (see Figure 8). The tidal quality factor (Q)
defines the efficiency of tidal dissipation within the planet or
star. Each track uses initial conditions that reproduce the
present-day orbital period and eccentricity of the system.
Unfortunately, due to the high density of the planet and its
relatively large semimajor axis, we are unable to produce
meaningful constraints on QP or Qå (see Figure 8). In
particular, even for Qå=106 and QP=106 the amount of
circularization this system has undergone is relatively low.
When using Qå=105, we are not able to find an initial
eccentricity large enough to replicate the present eccentricity
observed for TOI-172 b. However, we are unable to try initial
eccentricities larger than about e=0.6, because the Taylor
series expansion of the tidal potential in eccentricity diverges
past that point.
This system contradicts normal conventional wisdom that

tidal circularization is dominated by tides raised on the planet
since the rate of circularization scales as (M’/M)×R5, where
M and R are the mass and radius of the body experiencing the
tides, and M’ is the mass of the companion (Adams &
Laughlin 2006). For a typical Jupiter mass planet around a
Solar-type star, the contribution from tides raised on the planet
is stronger than that from tides raised on the star by a factor of
10. However, TOI-172 b is more massive than Jupiter
(MP=5.4 MJ) and the host star is larger than the Sun
(Rå=1.78 Re). Compared to the fiducial case, these contribute

Table 3
Median Values and the 68% Confidence Interval for the Global Model of

TOI-172

Parameter Units Values

Stellar Parameters
M*K Mass (M☉)K 1.128 0.061

0.065
-
+

R*K Radius (R☉)K 1.777 0.044
0.047

-
+

L*K Luminosity (L☉)K 2.89 0.18
0.19

-
+

ρ*K Density (cgs)K 0.286 0.023
0.022

-
+

glog K Surface gravity (cgs)K 3.993 0.028
0.027

-
+

TeffK Effective temperature (K)K 5645±50
[Fe/H]K Metallicity (dex)K 0.148 0.080

0.079
-
+

Fe H 0[ ] aK Initial metallicity K 0.172 0.078
0.074

-
+

AgeK Age (Gyr)K 7.4 1.5
1.6

-
+

EEPbK Equal evolutionary point K 456.0 6.8
3.5

-
+

Notes.
a The initial metallicity is the metallicity of the star when it was formed.
b The equal evolutionary point (EEP) corresponds to static points in a stars
evolutionary history when using the MIST isochrones and can be a proxy for
age. See Section 2 in Dotter (2016) for a more detailed description of EEP.

41 The uncertainty on the transit depth is about 4%, so 1% dilution affects the
measured depth by much less than 1σ.
42 https://exoplanetarchive.ipac.caltech.edu/; Akeson et al. (2013). 43 https://github.com/kpenev/poet
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Table 4
Median Values and the 68% Confidence Interval for the Global Model of TOI-172

Parameter Description (Units) Values

PK Period (days)K 9.47725 0.00079
0.00064

-
+

RPK Radius (RJ)K 0.965 0.029
0.032

-
+

TCK Time of conjunction (BJDTDB)K 2458326.9190±0.0017
T0

aK Optimal conjunction Time (BJDTDB)K 2458345.8734±0.0013
aK Semimajor axis (au)K 0.0914±0.0017
iK Inclination (Degrees)K 88.2 1.0

1.1
-
+

eK Eccentricity K 0.3806 0.0090
0.0093

-
+

ω*K Argument of Periastron (Degrees)K 57.1±1.7
TeqK Equilibrium temperature (K)K 1198 17

18
-
+

MPK Mass (MJ)K 5.42 0.20
0.22

-
+

KK RV semi-amplitude (m s−1)K 517.6±6.2
logKK Log of RV semi-amplitude K 2.7140±0.0052
RP/R*K Radius of planet in stellar radii K 0.05588 0.00092

0.00091
-
+

a/R*K Semimajor axis in stellar radii K 11.09 0.30
0.28

-
+

δK Transit depth (fraction)K 0.00312±0.00010
DepthK Flux decrement at mid transit K 0.00312±0.00010
τK Ingress/egress transit duration (days)K 0.01093 0.00050

0.00085
-
+

T14K Total transit duration (days)K 0.1964 0.0029
0.0028

-
+

TFWHMK FWHM transit duration (days)K 0.1853±0.0029
bK Transit Impact parameter K 0.22 0.14

0.12
-
+

bSK Eclipse impact parameter K 0.43 0.27
0.23

-
+

τSK Ingress/egress eclipse duration (days)K 0.0229 0.0024
0.0054

-
+

TS,14K Total eclipse duration (days)K 0.355 0.043
0.026

-
+

TS,FWHMK FWHM eclipse duration (days)K 0.332 0.048
0.027

-
+

δS,3.6 μmK Blackbody eclipse depth at 3.6 μm (ppm)K 115.2+7.8
−6.3

 S,4.5 md m K Blackbody eclipse depth at 4.5 μm (ppm)K 176.7 8.6
10.

-
+

ρPK Density (cgs)K 7.53 0.72
0.65

-
+

loggPK Surface gravity K 4.162 0.031
0.026

-
+

ΘK Safronov number K 0.908 0.031
0.030

-
+

 Fá ñK Incident flux (109 erg s−1 cm−2)K 0.407 0.022
0.026

-
+

TPK Time of Periastron (BJDTDB)K 2458326.549 0.027
0.025

-
+

TSK Time of eclipse (BJDTDB)K 2458323.485 0.049
0.052

-
+

TAK Time of ascending node (BJDTDB)K 2458325.863 0.024
0.025

-
+

TDK Time of descending node (BJDTDB)K 2458328.667 0.049
0.050

-
+

ecosω*K K 0.2065 0.0082
0.0086

-
+

esinω*K K 0.319±0.012
M isinP K Minimum mass (MJ)K 5.42 0.21

0.22
-
+

MP/M*K Mass ratio K 0.004587 0.00011
0.000100

-
+

d/R*K Separation at mid transit K 7.17 0.23
0.24

-
+

PTK A priori non-grazing transit prob K 0.1316 0.0043
0.0044

-
+

PT, GK A priori transit prob K 0.1472 0.0048
0.0050

-
+

PSK A priori non-grazing eclipse prob K 0.0677 0.0016
0.0020

-
+

PS, GK A priori eclipse prob K 0.0757 0.0018
0.0023

-
+

Wavelength Parameters i′ z′ TESS
u1K linear limb-darkening coeff K 0.325±0.051 0.263±0.050 0.310±0.049
u2K quadratic limb-darkening coeff K 0.271 0.051

0.050
-
+ 0.270 0.050

0.049
-
+ 0.263 0.050

0.049
-
+

ADK Dilution from neighboring stars K 0.0017734 0.0000062
0.0000063

-
+ 0.014331±0.000051 0.007830±0.000028

Telescope Parameters FEROS TRES
γrelK Relative RV offset (m s−1)K 6240.2 9.5

10.- -
+ -195.7±4.2

σJK RV jitter (m s−1)K 30.0 8.4
12

-
+ 6.4 6.4

7.7
-
+

σJ
2K RV jitter variance K 900 430

900
-
+ 41 95

160
-
+

Transit Parameters LCO UT 2018-09-22 (i′) LCO UT 2018-10-11 (z′) TESS
σ2K Added variance K 0.0000192 0.0000025

0.0000030
-
+ 0.0000085 0.0000013

0.0000016
-
+ 0.0000000139 0.0000000078

0.0000000083- -
+

F0K Baseline flux K 1.00051±0.00046 0.99970 0.00037
0.00038

-
+ 1.000007±0.000013

Note.
a Minimum covariance with period. All values in this table for the secondary occultation of TOI-172 b are predicted values from our global analysis.
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to an increase by a factor of nearly 90 in the rate of
circularization due to tides raised on the star and a decrease by
a factor of about 7 in the rate of circularization due to tides

raised on the planet. Therefore, the present-day orbital
evolution of TOI-172 b is dominated by the tides raised on
its host star by the planet.

Figure 7. Left: glog and Teff of all known stars with transiting (black) and RV (gray) discovered exoplanets. TOI-172 b is shown in red. Right: period and eccentricity
of all known exoplanets color coded by log(MP). TOI-172 b is identified by the larger data point and the black arrow. The data behind these figures were downloaded
on UT 2018 December 21 from the NASA Exoplanet Archive (Akeson et al. 2013).

Figure 8. Evolution of the (top) orbital period and (bottom) eccentricity for TOI-172 b shown for a range of values for Qå. The color of the line indicates the
dissipation in the star (red: Qå=106, green: Qå=107, blue: Qå=108) and the line style indicates the dissipation in the planet (solid: QP=106, dashed: QP=107,
and dotted: QP=108). The tidal circularization in this system is dominated by tides raised on the star, rather than the planet (see Section 4.1).
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4.2. Atmospheric Characterization Prospects

The high eccentricity observed in the planet’s orbit
combined with the slight evolution of the host star make
TOI-172 b an interesting target for detailed characterization.
While it is possible that hot Jupiters form in situ (Batygin et al.
2016), most formation theories suggest that these planets form
at larger distances from their host stars (core accretion or
gravitational instability; Pollack et al. 1996; Boss 2000;
Gammie 2001; Lissauer & Stevenson 2007; Boley 2009) and
migrate inward via two main interactions, either with drag due
to the original protoplanetary disk during formation or by
gravitational interaction with another body in the system (Rasio
& Ford 1996; Fabrycky & Tremaine 2007; Papaloizou et al.
2007). It was originally believed that the large number of hot
Jupiters shown to have misaligned orbits relative to the host
star’s spin axis indicated that these systems must migrate
through gravitational scattering (Winn et al. 2010). However,
the origin of these misalignments could have occurred from
misalignments in the protoplanetary disk (Batygin 2012; Crida
& Batygin 2014). Therefore, it is unclear what migration
mechanism is responsible for close-in Jovian planets.

The migration mechanism may be revealed by studying the
chemical abundances in the planet’s atmosphere. Specifically,
it is more difficult to explain low carbon and oxygen
abundances relative to the planet’s host star via disk migration
than via disk-free migration (Madhusudhan et al. 2014). The
high eccentricity of TOI-172 b is suggestive of disk-free
migration, although our investigation of its orbital evolution
suggests it never possessed the extremely high eccentricity that
would be required to migrate from a formation location beyond
the ice line. Moreover, as discussed previously, it is plausible
that many hot Jupiters migrated first in the disk and then
consequently through planet–planet interactions; even eccentric
planets may have disk migration in their history. Nonetheless,
there are currently only about a dozen planets larger than
Neptune for which the eccentricity is greater than 0.2 with at
least 99% confidence, a relatively short period (<20 days), and
are bright enough (V<12) to be well suited for atmospheric
characterization (see footnote 42). Interestingly, less than half
of these systems (including TOI-172) have a massive planetary
companion (>3 MJ). Therefore, TOI-172 b—with the other few
known planets in this subsample, such as HAT-P-2b (Bakos
et al. 2007) and WASP-162 (Hellier et al. 2019)—provides a
great opportunity to carry out this test. If a depletion of oxygen
and carbon are detected, it could provide evidence that it
migrated via a disk-free method, or otherwise place constraints
on its disk migration history. Future observations could try to
characterize the composition of TOI-172 b’s atmosphere using
current facilities like the Hubble Space Telescope and future
facilities like the James Webb Space Telescope. Additionally,
understanding the full architecture of the TOI-172 system, by
looking for long-period giant planet companions through RV
monitoring, may provide additional insight into its evolutionary
history.

5. Conclusion

We present the discovery of TOI-172 b, a massive Jupiter in
a highly eccentric ∼9.5-day orbit around a slightly evolved G
star. The planet has a very high density (MP=5.42 0.20

0.22
-
+ MJ,

RP=0.965 0.029
0.032

-
+ RJ, ρP=7.53 0.72

0.65
-
+ g cm−3) while its host star

appears to be a subgiant (Må=1.128 0.061
0.065

-
+ M☉, Rå=

1.777 0.044
0.047

-
+ R☉, logg=3.993 0.028

0.027
-
+ ). Interestingly, TOI-172 b

is in a rare class of highly eccentric (>0.3), short-period
(<20 days) massive (>3 MJ) planets. The large mass and
semimajor axis of TOI-172 b corresponds to a circularization
timescale much larger than the age of the universe. The large
eccentricity of the planet’s orbit suggests that at least some of
its migration history included dynamical interactions with other
components in the system. From studying the orbital evolu-
tionary history of TOI-172 we are unable to place any useful
constraints on QP or Qå since the tidal evolution is expected to
be slow in this system for all reasonable values of Qå and QP.
Future observations could provide more evidence for the
migration mechanism by studying the atmospheric composition
of TOI-172 b or by studying the entire known ensemble of hot
Jupiters in the literature.
Facilities: TESS, FLWO 1.5 m (Tillinghast Reflector Echelle

Spectrograph), 4.1-m Southern Astrophysical Research
(SOAR), LCO 0.4 m, LCO 1.0 m, 2.2 m telescope La Silla
(Fiber-fed Extended Range Optical Spectrograph).
Software: EXOFASTv2 (Eastman et al. 2013; Eastman

2017), AstroImageJ (Collins et al. 2017).
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