33,700 research outputs found

    Automatic tuning of hydrogen masers

    Get PDF
    Varying the density of the atoms in the cavity changes the Q of the atoms. When the cavity is mistuned, the density variation causes a frequency variation proportional to the degree of cavity mistuning

    Thermodynamics and kinetics of pack aluminide coating formation on IN-100

    Get PDF
    An investigation of the effects of pack variables on the formation of aluminide coatings on nickel-base superalloy IN-100 was conducted. Also, the thermodynamics and kinetics of coating formation were analyzed. Observed coating weights were in good agreement with predictions made from the analysis. Pack temperature rather than pack aluminum activity controls the principal coating phase formed. In 1 weight percent aluminum packs, aluminum weight gains were related to the halide pack activator. Solid-state nickel diffusion controlled coating formation from sodium fluoride and chloride and ammonium fluoride activated packs. In other ammonium and sodium halide activated 1 weight percent aluminum packs, gaseous diffusion controlled coating formation

    Simulation of radiation from lightning return strokes: The effects of tortuosity

    Get PDF
    A Monte Carlo simulation has been developed for the electromagnetic fields radiated from a tortuous lightning channel. This was done using a piecewise linear model for the channel and employing for each element the field radiated by a traveling wave on an arbitrarily oriented filament over a conducting plane. The simulation reproduces experimental data reasonably well and had been used to study the effects of tortuousity on the fields radiated by return strokes. Tortuosity can significantly modify the radiated waveform, tending to render it less representative of the current pulse and more nearly unipolar than one would expect based on the theory for a long straight channel. In the frequency domain the effect of tortuosity is an increase in high frequency energy as compared with an equivalent straight channel. The extent of this increase depends on the mean length of the elements comprising the channel and can be significant

    Radiation from a current filament driven by a traveling wave

    Get PDF
    Solutions are presented for the electromagnetic fields radiated by an arbitrarily oriented current filament located above a perfectly conducting ground plane and excited by a traveling current wave. Both an approximate solution, valid in the fraunhofer region of the filament and predicting the radiation terms in the fields, and an exact solution, which predicts both near and far field components of the electromagnetic fields, are presented. Both solutions apply to current waveforms which propagate along the channel but are valid regardless of the actual waveshape. The exact solution is valid only for waves which propagate at the speed of light, and the approximate solution is formulated for arbitrary velocity of propagation. The spectrum-magnitude of the fourier transform-of the radiated fields is computed by assuming a compound exponential model for the current waveform. The effects of channel orientation and length, as well as velocity of propagation of the current waveform and location of the observer, are discussed. It is shown that both velocity of propagation and an effective channel length are important in determining the shape of the spectrum

    A method of eliminating hydrogen maser wall shift

    Get PDF
    Maser output frequency shift was prevented by storage bulb kept at temperature at which wall shift is zero and effects of bulb size, shape, and surface texture are eliminated. Servo system is shown, along with bidirectional counter

    System automatically tunes hydrogen masers

    Get PDF
    Automatic tuning system permits frequency synchronization between two hydrogen masers. System matches spaceborne clock performance with that of ground-based clock to test red shift theory. This system, used in conjunction with radio astronomy for long-baseline interferometer experiments, serves as a tool for investigation of distant universe phenomena

    Flocking Regimes in a Simple Lattice Model

    Get PDF
    We study a one-dimensional lattice flocking model incorporating all three of the flocking criteria proposed by Reynolds [Computer Graphics vol.21 4 (1987)]: alignment, centring and separation. The model generalises that introduced by O. J. O' Loan and M. R. Evans [J. Phys. A. vol. 32 L99 (1999)]. We motivate the dynamical rules by microscopic sampling considerations. The model exhibits various flocking regimes: the alternating flock, the homogeneous flock and dipole structures. We investigate these regimes numerically and within a continuum mean-field theory.Comment: 24 pages 7 figure

    Hy-wire and fast electric field change measurements near an isolated thunderstorm, appendix C

    Get PDF
    Electric field measurements near an isolated thunderstorm at 6.4 km distance are presented from both a tethered balloon experiment called Hy-wire and also from ground based fast and slow electric field change systems. Simultaneous measurements were made of the electric fields during several lightning flashes at the beginning of the storm which the data clearly indicate were cloud-to-ground flashes. In addition to providing a comparison between the Hy-wire technique for measuring electric fields and more traditional methods, these data are interesting because the lightning flashes occurred prior to changes in the dc electric field, although Hy-wire measured changes in the dc field of up to 750 V/m in the direction opposite to the fair weather field a short time later. Also, the dc electric field was observed to decay back to its preflash value after each flash. The data suggest that Hy-wire was at the field reversal distance from this storm and suggest the charge realignment was taking place in the cloud with a time constant on the order of 20 seconds

    Overlay metallic-cermet alloy coating systems

    Get PDF
    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures
    corecore