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RADIATION FROM A CURRENT FILAMENT 
DRIVEN BY A TRAVELING WAVE 

D. M. L e  Vine and Robert Meneghini 
Goddard Space Flight Center 

Greenbelt, Maryland 

INTRODUCTION 

This document presents a solution for the electric field radiated from an arbitrarily oriented 
current filament located above a perfectly conducting plane and driven by a traveling current 
wave. Both an exact and an approximate solution are obtained. The approximate solution 
is obtained by simplifying the integrand in expressions for the magnetic vector potential 
in a conventional manner (i.e., the “far-field’’ approximation) and, as a result, yields only 
the radiation terms of the electric field measured by an observer in the fraunhofer region of 
the filament. On the other hand, a closed-form expression for the fields can be obtained 
without resorting to approximation in the special case in which the current wave propagates 
along the filament at the speed of light in the medium surrounding the filament. This “exact” 
solution predicts both radiation and near (e.g., induction) fields and applies regardless of 
the distance of the observer from the filament, length of the filament, or frequency. Both 
solutions apply regardless of the current waveform: the only restriction on the current wave
form required in the approximate solution is that it be a propagating wave, and the only addi
tional restriction on the current waveform required for the “exact” solution is that the wave 
propagate with the speed of light in the medium in which the filament resides. 

This problem arose during a study of radiation from lightning. The signal radiated by a light
ning flash (called an “atmospheric” or just “sferic”) is important as a noise source in the 
design of communications systems and is also as a diagnostic in the study of lightning itself. 
It may also be possible to relate the radio-frequency radiations from lightning to meteorolog
ical observables of the parent storm cell: for example, it has been suggested (References 1,  
2, and 3) that a high frequency of occurrence of lightning is related to the existence of 
tornadoes. 

The physical nature of lightning permits analysis at radio frequencies, in terms of a piecewise 
linear model of radiating electrical elements. For example, a typical cloud-to-ground lightning 
event begins as a series of ionizing steps (stepped leader) along which current propagates to 
establish a conducting channel between the charge in the cloud and the ground. The leader 
process is followed by a large current surge (the return stroke) which exchanges charge between 
the cloud and the ground. The current in the return stroke propagates along the channel at 



- -  

velocities approaching the speed of light (Reference 4), and the shape of the current wave 
is roughly exponential (Appendix A). 

An obvious natural beginning point for the calculation of the fields radiated by a piecewise 
linear model is to use the “far-field” approximation to calculate the fields radiated by each 
current element in the model. Unfortunately, questions of validity arise when this approxi
mation is used for lightning, because interest often lies in relatively low-frequency behavior 
(the peak energy radiated by a return stroke is centered near 10 kHz) and because the light
ning channel is often long enough (on the order of a few kilometers) so that being in the 
far field cannot be guaranteed even at relatively large distances from the flash. On the other 
hand, an exact solution exists for this problem whenever the propagating current wave 
travels at  the speed of light in the medium surrounding the current element. Although not 
precisely appropriate to lightning because of the restriction on the velocity of propagation, 
this solution is close enough to reality to provide insight into the near-field and low-frequency 
behavior of the field electromagnetic fields; it also provides a standard with which to assess 
the applicability of the far-field approximation. 

The purpose of this document is to present both the exact and the far-field solutions for 
representing radiation from lightning and to use these solutions to illustrate the effect of 
various channel parameters on the spectra (Le., magnitude of the Fourier transform) of the 
fields radiated from lightning. The following section presents the exact solution for both 
the electric and magnetic fields radiated from a current filament driven by a traveling wave 
of arbitrary shape. The next section presents the equivalent solution, obtained by making 
far-field approximations, and the following section compares the two solutions. This com
parison indicates that the approximate solution fails at low frequencies in a regime which 
may be of interest in lightning studies. The comparison is followed by examples of the effect 
of filament orientation, velocity of propagation, filament length, and the observer’s orienta
tion on the spectra observed from a typical return stroke. Finally, a model is presented for 
a transfer function for the radiation process. 

EXACT SOLUTION 

Consider a current filament,T(ri, t),  above a perfectly conducting plane (the z = 0 plane) as 
shown in figure 1.  Assume that T(T,t )  has the form: 

J ( r , t )  = f?f (1- GI 
A

where R is a unit vector parallel to the filament, and in the direction of current flow,? is the 
position vector of a point on the filament, and c = 3 x 10’ m/s 

A
is the speed of light. Thus, 

I


J(F,t) is a current pulse with shape f(t) which propagates in the R direction at the speed of light.
-

A solution for the Fourier transform,* E@,v),  of the radiated electric field, E(F,t), is to be 
obtained here by Fourier transforming Maxwell’s equations (with respect to time) and then 
solving the transformed equations. This, in turn, is done most conveniently in terms of a 

*The superscript “tilda” denotes a Fourier transform. For example: Z ( u )  = g (t) exp (j27rut) dt. 
-m 
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Y A 
magnetic vector potential, x(T,v). By noting that I@, Y) = $T(v)exp(jk !2 r) where k = 2 m/c 
and employing the image theorem for currents, the following result is obtained for the ia 
(rectangular) component of the magnetic vector potential: 

where the integration is over the filament and where 

-
R = IFo- rf  I = d ( x o  - x‘)2 + (yo - yf)2 + (zo - d ) 2  

- - I  + (z + zf12R, = lr0 - r I I = (x- xf)2 + ( y - ~ ~ ) ~  

{ +I i f i = x o r y  

Ei = 

-1 i f i = z  

-
ro = the position vector of  the observer 

By transforming to a coordinate system in which one axis is parallel to the filament, equation 
2 can be reduced to a single integral. Let this axis be the z-axis, and denote coordinates of 
the observer and filament expressed in the new system by? and?”, respectively: 

where 
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and where xi‘ and yi’ are the x- and y-coordinates, respectively, of the filament as seen in the 
rotated reference frame. The rotation was accomplished by first rotating countxrclockwise 
about the z-axis through the angle 8 until the x-axis lay in the plane formed by R and the 
z-axis, and then rotating sounterclockwise about the new y-axis through the angle $J until 
the z-axis was parallel to Q. (See Appendix B.) 

Now, in the first integral in equation 4 (i.e., the integral over the source terms), make the 
change of variables: 

and in the second integral let 

This results in the following: 

ejkuIsU1”’ 
- ei exp [jk (- zb + 2 sin 4 (zb sin 4 + xb cos 4 ))] duI/

U,(a) 

By transforming back to the original reference frame (Appendix B), and noting that 

A A A A A
where R’ = R - 2(R - z) z is a unit vector in the direction opposite to the image current, the 
following vector form is obtained for the magnetic vector potential: 
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where fo r i  = a, b: 

and 

whereTa andTb are the position vectors of the end oints of the current filament, To is the 
X A  A A

position vector of the observer, and?: =Ta - 2(Ta z)z and?; =T,, - 2(Fb z)z are the position 
vectors of the end points of the image current filament.-
The electric-field intensity, E(Fo, v), can be computed from equation 8 by means of the 
formula: 

r 1 

The procedure is relatively straightforward and can eventually be written in the following 
form : 
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where for i = a,b: 

A 

Z(P i>  -- & k Q * T i  

A
,? ' (p i )  = ejk Q' 

Note that vectors '$ (pi) and ( p i )  are unit vectors in the direction of the radiation component 
of electric field associated with the source and image current, respectively. Note, also, that 
the solution contains four terms, each of which involves the coordinates of the observer and 

A one of the end points of the source or image filament. The two terms associated with E (pi) 
involve the end points of the source, and the two terms associated with e ( p l )  involve the 
end points of the image. Consequently, the radiation from the filament can be treated as if 
it were emanating from the end points of the source and image filament only. 

In the solution for ,v), note the presence of the terms that are dependent onVpi/kpi. 
These terms represent inductive (i.e., nonradiation) components of the electric-field intensity 
and become negligible in the limit of large kpi. 

The magnetic-field intensity associated with the currect filament can also be obtained from 
equation 10 by means of the formula: 
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The calculation is again straightforward, although somewhat lengthy, and may be simplified 
with the aid of the vector identities: 

V ( @ 8 )  = @ V 8  + 8 V@ ( 1 4 ~  
A 

Note that, for i = a,b, VU(i) = Vpi - Q and similarly that, in the case of the image, VU’(i) = 
VpI --e;thus: 

ru


fl (To,v) = F(v )  1[- -
h (p,) -


(15) 

where for i = a,b: 

A A
The unit vectors h(pi) and h’(pl) are in the direction of the magnetic-field intensity associated 
with the source and image current filament, respectively. 

Note that the solution for the magnetic intensity does not contain terms which depend on 
powers of l/kp, higher than the first. Also, the electric and magnetic fields associated with 
each end point (Le., those attributable to one of the four terms in the solution) are orthogonal, 
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and the fields associated with the source filament only or the image filament only are orthog
onal, but the total electric and magnetic fields are orthogonal only in the special case in 
which the image and source are coplanar. That is, in the absence of boundaries, the total 
radiation fields from a single source are orthogonal, but the boundary, acting as an effective 
second source, can result in nonorthogonal electric and magnetic fields, even in the far field. 

Finally, the magnitude of the radiation components of the electric and magnetic fields asso
ciated with a given end point are proportional, the proportionality constant being the char
acteristic impedance of the medium, m . As previously stated, these fields are also orthog
onal. Therefore, in some respects, the fields associated with each end point behave as if 
there were a small current source located at the end point. 

APPROXI MATE SOLUTl ON 

A solution is presented here for the problem treated above, radiation from a current filament 
driven by a traveling wave and located above a conducting plane, by employing the far-field 
approximations; that is, assuming that the observer is far enough from the current filament 
that kp >> 1 and kL2/ p  << 1, where L is the length of the filament and p is the distance 
from the filament to the observer. When this approximation is made, the restriction to 
currents which travel at the speed of light, c, is no longer necessary and the following current 

A .waveform which propagates with speed v in the R direction can be treated: 

A- A R ' 7  
1J ( i ; t )  	= Rf( t  -~ 

V 

Other than this minor change, the solution is formulated initially as in the preceeding section. 
Thus, the magnetic vector potential is: 

A
R F'  jkR A ,jkRI

4T R,x ( r , , v )  = p T ( v )  e j 2 T v [ 7 ]  [bQ -- @ ]  di-' (18) 
filament 

where all quantities are as defined in equation 3. 

The electric field isfbtained
A -

from the preceeding equation by means of equation 10, and 
noting that V [ 7 - (!@)] = ( a *V)V @ for the constant vector II, the following result is obtained: 
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To evaluate the integrals in equation 19, assume that the distance from the filament to the 
observer is larger than the length of the filament and expand R and RI in a power series about 
the center of the filament. Thus, in the case of the source filament, 

R = IFo - F ‘  I = I (Fo  - Tc) + (T, - T’) I 

= d l F 0  - Tc l 2  + ITc - f’12 + 2(T0 - FC) (ic- i=’) 

kc- f’ 1 2  
(20) 

ITo - Tc I + IFc - 7 ’  Icos4 + -: [ ITo - Pc I ]  

where 

(To - r,) - ( Tc - 7 ’ )  
cos 4 = -1~~ - rc  I 1~~ - i’ I 

and w h e r e i  is the position vector of the filament center. Now, let p ,  = ITo -7,I ,  and assume 
that 

kL2/pc << 1 

kL >> 1 

-
where L is the length of the filament. Then, R zz p ,  + ITc - r’ I cos 4 for use in the exponential, 
and R p ,  elsewhere. Repeating this argument for the image distance R, and substituting 
the results into equation 19, it follows that: 
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where: 

-

f i l ment 

filament 

The vectors associated with the image filament are: 

- I  - - A A r c  - rc - 2(TC z ) z  (25a) 

- f  - - I  A Ar I  - r - 2 ( ~ ’* z ) z  (25b) 

pcI -- 1 %  - T y  (25c) 

To evaluate integrals I(v) and I1(v),rotate to a coordinate system in which the filament is 
parallel to the z-axis as in the preceeding section and as described in Appendix B,  and then 
perform the z-integration in a coordinate system with zzrigin at the filament center. Note 
that, in this coordinate system, ITc -7’ I cos cp = (zc - z”) Q-Vpc ;therefore 



- R  

= ejkvzc { Lsinc[  %kL(r)  - !2
A - V p c ) l }  

where r)  = c/v. Similarly, in the case of the image, 

A
On transforming back to the original reference frame, replace zc and z: by zc = R -Tcand 

t ;At ..zc r:. 

The remaining vector operations are straightforward and yield the following results: 
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Now, keeping only terms of lowest order in kpc ,the following results for electric field are 
obtained : 

where 

The magnetic field intensity can be obtained from equation 13 in a straightforward manner. 
After making the far-field approximations and keeping only lowest order terms in kpc, the 
following form results: 

The solution in equation 30 is valid for the arbitrary index of refraction, q ;however, in the 
special case, q = 1, which is the assumption used above in the treatment of the “Exact 
Solution,” the far-field solution can be put into a form even more similar to that obtained 
for the complete solution. Adopting the notation used in the preceeding section, the follow
ing forms are obtained for the far-field solutions when q = 1: 
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where all quantities are as previously defined except that FR ( p , )  and F k  ( p i )  are the vector 
components of equations 12a and 12b associated with ? ( p )  and ? ’  (p’), respectively; that is, 
associated with the radiation terms only. 

Equations 3 1a and 3 1b obviously have a form similar to the radiation component of the 
complete solution, except that, whereas the complete solution (equations 11 and 15) gave 
the appearance that the radiation came from the ends of the filament, the far-field solution 
appears to emanate from the filament center and, in compar2on with the complete solution, 
is weighted by a spatial “transfer function,” 2j sin [%kL(l - Q Vp)] ,associated with the 
filainent . 

COMPARISON OF EXACT AND APPROXIMATE SOLUTIONS 

The solution presented in “Exact Solution” is exact in the sense that no mathematical 
approximations were needed to obtain a solution in closed form. For this reason, this solu
tion provides a useful standard with which to compare the approximate solution obtained 
above. Comparison of the two solutions yields insight into the usefulness of the far-field 
approximation and the nature of its shortcomings. 

As a first point, note that making the far-field approximation in the exact solution (equations 
11 and 15) yields a result identical to the approximate (far-field approximation) solution 
obtained above (equations 3 1a and 3 1b). The details are given in Appendix C. In making 
the far-field approximation in the exact solution, the approximations must be made after 
the integrations over the filament have been performed, whereas, in deriving the approx
imate solutions (as in “Approximate Solution”), the same approximations are made before 
performing the integrations. Appendix C shows that the end result is the same, giving 
credence to the approximate solution. 

The conditions imposed by the far-field approximations used to obtain the approximate 
solution are that, in addition to L/p << 1, kp >> 1 and kL*/p << 1 which would suggest, 
for fixed p and L, a frequency band in which the approximate solution faithfully represents 
the true solution. Certainly, as kp becomes smaller, the nonradiation terms in the exact 
solution become significant, and the approximate solution, which contains only radiation 
fields, must fail. Appendix D contains a more quantitative assessment for an observer 
located on the surface. I t  shows that, at low frequencies, as expected, the far-field solution 
fails to agree with the exact solution whenever the nonradiation terms become significant. 
The exact solution is actually singular in kp, but the far-field solution is not. However, 
the solutions do not agree at low frequencies even when only radiation terms are compared. 
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Appendix D shows that the power spectrum for the radiation terms of the electric field as 
predicted by the exact solution becomes a constant times the spectrum of the current wave
form, I f(v) I as k +0, whereas the far-field approximation is proportional to  k times IR v )  I 
as k +0, so that even the radiation terms exhibit a different low-frequency behavior. 

The relative low-frequency behavior of the exact and far-field solutions is illustrated in 
figures 2 through 6 for a current waveform with exponential shape. (A threeexponential 
model is used for the current. This waveform is shown in figures 7 and 8 and is discussed ' 
in Appendix A. The spectrum, Igv)1, associated with this waveform is constant at low 
frequencies and decreases as l /v for large frequencies.) In each of figures 2 through 6 , 2 0  
times the logarithm (base 10) of the magnitude of the electric field is plotted along the 
ordinate, and frequency is plotted along the abscissa. In figures 2 through 4, the observer 
is located on the surface at increasing distance (5, 50, and 500 km, respectively) from the 
origin. The current element is a vertical filament 1.5 km long with one end at the origin 
(i.e., on the surface). Each figure shows three curves, which represent the exact solution, 
the far-field (approximate) solution, and t5e radiation component only of the exact solution. 
Because of the nonradiation terms, the exact solution appears as IT(v)I/k near k = 0. Because 
I f i v )  Iis a constant for k = 0 for the exponential waveform, this solution is singular at zero 
frequency. This singularity is evident in each figure where, for low enough frequency, the 
exact solution begins to increase with decreasing frequency. The asymptote for this low-
frequency behavior is a straight line with (negative) slope of 20 dB/decade. On the other 
hand, the radiation component of the exact solution approaches a constant times I '&I) I for 
small v, as is evident in each of the three figures. The low-frequency behavior of the approx
imate solution is different from both of these asymptotes: it  decreases as 1/v for low fre
quency. The effect of increasing the distance from the observer to the source is both to 
decrease the magnitude of the spectrum at a given frequency and to shift toward lower fre
quency the point at which the three curves-exact, radiation, and approximate solutions-
begin to differ. This is because the criterion kp >> 1 is dominant for this case. The effect 
of decreasing the element length is illustrated in figures 4 through 6 in which the element 
length is decreased from 1500 m to 150 m to 15 m, respectively. 

In the limit of very high frequency (high enough so that only the radiation terms in the exact 
solution need be considered), both solutions predict power spectra which are proportional 
to IQv) I times an oscillating factor. In the exact solution, this factor oscillates between 
finite upper and lower lim$s determined by the geometry; in the far-field solution, this 
oscillation is sin [%kL(l - Q Vp, ) ]  and, in particular, has nulls that are not usually present 
in the exact solution. On the other hand, the peak values predicted by the two solutions are 
essentially the same whenever the length of the filament is short enough so that pa 2 p, . 
Therefore, if only the upper envelope of the magnitude of the power spectrum is required,

N 

it is proportional in both cases to If(v) I, and the criterion that the proportionality constants 
be equal is that, for i = a,b: 
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which is independent of frequency. This requirement will be satisfied if L/pc << 1. There
fore, although the requirement kL2/ p  << 1 would indicate a failure of the far-field solution 
at large k, this does not happen if only the upper envelope of the power spectrum is required. 
In this case, the purely geometric criterion given in equation 32 is appropriate. 

The high-frequency behavior of the exact and approximate solutions are illustrated in figures 
9 and 10. Again the threeexponential waveform (Appendix A) has been used, and the ob
server is located on the surface at 10 km from the origin. In figure 9, the filament is vertical, 
1.5 km long with one end at the origin. In figure 10, the filament is horizontal with its 
center 4 km above the surface at  the origin and oriented so that the filament and observer 
are coplanar. Note that the exact and approximate solutions are essentially identical for 
frequencies above about 1 kHz (kp = 1). (Nulls in the approximate solution do not show in 
the plot because of computer sampling and roundoff errors.) The different slope of the spec-

A 
tra for the horizontal and vertical elements is attributable to  the factor, L( 1 - II * Vp)-the 
effective length of the filament which is essentially L for the vertical element, but is consid
erably smaller for the horizontal element. Note that, for the vertical element, no apparent 
difference exists between the exact and approximate solutions (except near the nulls), even at 
frequencies above 1 MHz where the requirement, kL2/ p  << 1,is no longer valid. 

EXAMPLES OF SPECTRA 

The actual spectrum measured by the observer depends on the orientation of the current 
element, the polarization of the observer’s receiver, and the height of the observer above 
the surface, as well as the physical properties of the filament (i.e., current waveform, velocity 
of propagation, and element length). This section contains examples that illustrate the 
effects of some of these factors on the observed spectrum. 

The word “spectrum” is used here to mean “Fourier transform.” Because all of the analysis 
presented in this document is in the frequency domain, the Fourier transform has already 
been taken as part of the solution. The figures presented here are plots of the magnitude 
of the spectrum (in dB) versus frequency (in Hz). That is, 20 times the logarithm (base 10) 
of the magnitude of a particular electric field component is plotted on the ordinate versus 
frequency on the abscissa. Therefore, if the spectrum of the x-component of electric field 
is being presented, 20 log [E, (v) E,*(v)] will be plotted against frequency in hertz (Hz). 

At very high frequency, the spectra oscillate rapidly, causing a problem in the graphical 
presentation of the results. In particular, as the frequency increases, the resolution (i.e., 
size of the scale) required for resolving these oscillations must also increase. If a fixed scale 
size and a fixed sampling interval are held for the machine calculations, aliasing can occur 
because the results are eventually undersampled. This happens in most of the figures shown 
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here in which data points at frequencies greater than about 1 MHz are shown, and is especially 
evident in figures 9, 11, and 14. In general, the high-frequency results presented here accu
rately represent the (upper) envelope of the spectrum, but not the location or number of 
nulls or maxima. Although the algorithms developed for this analysis are capable of including 
the location or number of nulls or maxima, the graphs would have been of impractical size. 
The actual spacing of nulls is discussed in Appendix A. 

Observer’s Orientation 

When the observer is on the surface, only a z-component of electric field is measured. How
ever, when the observer moves above the surface (for example, onto an elevated platform 
or aboard an airplane), other components of the electric field are observed. This effect is 
illustrated in figures 11 through 13, in which a vertical element 1.5 km long with one end at 
the origin is treated for an observer 100 km from the origin but at angles of 65,40, and 15 
degrees with respect to the vertical (Le., axis of the filament). The filament and the observer 
were chosen to be coplanar in all of these cases so that only two components of electric field 
would need to be plotted. The curve labelzd E(x) corresponds to a radially (i.e., perpendicular 
to the z-axis) directed field component. For comparison, figure 9 shows the observer located 
on the surface (90 degrees from the vertical). Note that, as the observer approaches the 
axis of the filament, the spectrum becomes flatter (the peak near 10 kHz begins to disappear) 
and there is a general shift toward higher frequency a n d p g e r  amplitude. This effect is 
caused by changes in the effective filament length L( 1 - R V p )which can differ significantly

A
from the filament’s physical length, L, whenever R Vp = 1. 

Figures 14 through 16 show the spectrum of the electric field components radiated by a 
horizontal current element I .5 km long with its center 4 km above the origin and parallel to 
the x-axis. The observer is again about 100 km away from the filament and lies in a plane 
that contains the filament and the z-axis; however, the observer is oriented so that the position 
vector of the observer (the line from the origin to the observer) makes angles of 15,40, and 
65 degrees (figures 14 through 16, respectively) with respect to the vertical. 

Because of symmetry, only two components of electric field exist for this particular orienta
tion-the x- and z-components. However, if the observer moves out of the x-y plane so that 
the observer’s position vector and the filament are no longer coplanar, all three rectangular 
field components may exist. Figures 17 and 18 show examples of such cases for a 1.5-km 
long horizontal current filament centered 4 km above the origin and parallel to the x-axis. 
The observer is about 100 km away. In figure 17, the observer is on the y-z plane at (y = 
90.63 km; z = 42.26 km) so that the position vector of the observer makes an angle of about 
75 degrees with the vertical. In figure 18, the observe; is located at (x = 50 km; y = 30 km; 
z= 2 km). 

Effect of Distance 

The effect of the distance of the observer from the filament is t o  generally decrease the ampli
tude of the spectrum measured by the observer. This is illustrated in figures 19 through 2 1 
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using the exact solution, and in figures 22 through 24 using the approximate solution. The 
calculations were made for a 1.5-km long vertical element, with one end at the origin and 
the observer along a line in the z-x plane which makes an angle of about 1.15 degrees with 
the x-axis. Note the decrease in amplitude with an increase in distance and the general 
improvement in the agreement of the exact and approximate solutions as the distance of 
the observer from the filament increases. As this distance increases, the criterion, kp >> 1 ,  
can be satisfied at lower frequencies, extending the range of agreement between the exact 
and approximate solutions to lower frequencies. 

Orientation of the Current Element 

In most of the preceeding examples, the current element has been vertical with one end 
located on the surface. Although this geometry is apropos of nearly vertical return strokes, 
it is not necessarily representative of other elements of the lightning flash, such as the indivi
dual steps in the stepped leader or of intercloud strokes. Figures 25 through 27 show spectra 
which are the result of a filament 1.5 km long with its center 4 km above the surface. The 
observer was located on the surface, 100 km from the origin. The element and observer 
are coplanar, but the angle that the element makes with the vertical is 45 degrees in figure 
25 and -45 degrees in figure 27; in figure 26 the element is vertical. The case of a horizontal 
element has already been given for this geometry in figure 9. Again note the broadening of 
the spectrumznd the shift toward higher frequencies because of changes in the effective 
length, L( 1 - !2 Vp), or in the orientation of the filament. 

Effect of Velocity of Propagation 

The velocity with which the current wave propagates along the filament has a definite effect 
on the fields radiated by the element. This effect is demonstrated in figures 28 through 30 
in terms of the approximate (i.e., far-field) solution which, unlike the exact solution, applies 
to all velocities of propagation. In each case shown in the figures, the filament is vertical 
with one end at the origin and is 1.5 km long, and the observer is located on the surface 
10 km from the origin. Figure 28 shows the electric field measured by the observer for the 
case in which the velocity of propagation, v, equals the speed of light in vacuum, c. In figure 
29, v = c/10, and in figure 30, v = c/100. 

As can be seen, the effect of decreasing the velocity of propagation is to shift the peak in 
the spectrum toward lower frequency with only minor changes in the overall shape. How
ever, if v becomes so small that the peak is shifted well beyond the knee of f(v) (figure 8), 
a change in the shape of the spectrum can also be expected. 

The magnitude of the spectrum of the electric field as predicted by the approximate solution 
for an observer on the surface is (equation 28a): 
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A
In the case of Q Vp, << 1, which is reasonable for a distant observer and a vertical element, 
the frequency dependence is roughly: I E v )  I sin (q kL). That is, the spectrum depends on 
a factor that scales in frequency as kq for fixed L and is multiplied by a factor dependent on 
the waveform (figures 28 through 30). 

TRANSFER FUNCTION FOR THE RADIATION PROCESS 

Examination of the solutions for the radiated fields (i.e., equations 11 and 15 for the exact 
solution or equations 3 1 for the approximate solution) indicates that they may be written 
in the form: 

.u 
E (To,v) = P ( v ) g e  (To,v) (334 

where f(v) is the Fourier transform of the shape of the disturbance that propagates down the-
filament, and he,h(r, ,v) is a vector function that depends on the observer-filament geometry 
and on the physical properties of the filament (such as length, orientation, and velocity of 
propagation) but not on the current waveform. Consequently, the radiation problem is con
sidered to  be a linear system in which f(v)- is the inpst current waveform, %e,h (To, v) is the 
transfer function for the “system,” and E(To ,v) or H(fo ,v) is the output. The requirement, 
inherent in the derivations, that the waveform propagate dong the channel, is a characteristic 
that belongs to  the system (Le., all f(v) propagate). 

Examples of the modulus of the vector components of the transfer function are shown in 
figures 31 through 35 for a vertical element 1.5 km long with one end at the origin. In figure 
32, the observer is on the surface, 100 km form the origin. In this case, only the z-component 
of the transfer function is nonzero, and this component is plotted in the figure for both the 
approximate and the exact solutions. In figures 32 through 34, the observer is also 100 km 
from the filament, but i t  is located so that the position vector of the observer makes angles 
of 65,40, and 15 degrees, respectively, with respect to the vertical. 

Note that, for high enough frequency, the transfer function becomes oscillatory with a con
stant maximum value for both the approximate and the exact solutions; however, the lower 
bound (not shown in the figures) is zero for the approximate solution and is finite for the 
exact solution (Appendix D). It follows that, at sufficiently high frequency, the envelope 
of the spectrum is determined by the current waveform, independent of geometry. At lower 
frequencies, both geometry and the current waveform affect the shape of the spectrum. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland September, 1976 
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Figure 2. Low-frequency behavior of exact and approximate solutions. 
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Figure 17. Exact solution: three-exponential waveform. 
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Figure 23. Approximate solution: three-exponential waveform. 
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Figure 25. Exact and approximate solutions: three-exponentialwaveform. 
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Figure 26. Exact and approximate solutions: three-exponential waveform. 
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Figure 27. Exact and approximate solutions: three-exponential waveform. 
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Figure 28. Approximate solutions: three-exponentialwaveform, V = C. 
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Figure 31. Exact and approximate solutions: three-exponential waveform, 
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APPENDIX A 

CURRENT WAVEFORM 

Measurement of the current in retum strokes reveals that the current pulse has a sharp rise 
time (on the order of microseconds to  peak value) followed by a relatively slow decay (on 
the order of 50 to  100 microseconds), and a small residual current (continuing current) that 
can persist for hundreds of microseconds after the main pulse is over. A combination of 
three exponentials is common in the literature on lightning for modeling this current (Refer
ences 1,2, and 3). Consequently, such a model has been adopted for use here. 

The following model is taken from Reference 1: 

where, for a typical lightning return stroke, the parameters are: 

(Y = 2.0 x io4 (A21 

p = 2.0 x 105 


7 = 1.0 x 103 


I, = 30ka  (A51 
I, = 2.5 ka (A61 

The first two exponentials in equation A1 represent the main current pulse, and the third 
term, I, exp(- y t), represents the continuing current. The current waveform, as predicted 
by this model, is as shown previously in figure 7. Note that the peak occurs about 13 micro
seconds after initiation of the pulse. 

N 

The spectrum of I(t), which is denoted f(v) in the text, was shown previously in figure 8. 
Twenty times the logarithm (to base 10) of the magnitude of the Fourier transform of I(t) 
is plotted (along the ordinate) versus frequency (along the abscissa). Curve A represents
Igv)I, and curves ByCyand D represent the (magnitude of) Fourier transform of the three 
constituent exponentials: Io exp(-at), Ioexp(-Pt), and I, expt ( q t ) ,  respectively. 

This current waveform has been used in all of the computations made in the text. It is rea
sonably representative of the actual current in return strokes, and consequently, the results 
presented here should be reasonable in a quantitative sense for the fields radiated by the 
return stroke. The currents carried by other components of the lightning flash (stepped 
leader, dart leader, and intercloud processes) are not as well known and probably differ 
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from I(t), at least in magnitude (i.e., I
P 
) if not in shape. Consequently, the results predicted 

here would probably be less quantitatively correct when applied to  flash elements other than 
return strokes. On the other hand, the analysis is independent of I(t), and, after sufficient 
information is obtained to  model I(t) for a given process, the formalism presented here can 
be adopted without change to  produce the radiated fields. 

Note that, in the computations of spectra made in the text, it is assumed that the current
A

waveform propagates along the channel (filament). That is, the current is I(t - Q r/v), which 
Ais a wave that travels in the J2 direction with speed, v. 
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APPENDIX B 

COORDINATE TRANSFORMATION 

The objective of this appendix is to  present a rotation of coordinates that will permit the 
z-axis of the reference coordinate system (x, y, z) to be aligned with an arbitrary unit vector,
A
Q. One way to accomplish this transformation is to first rotate in the counterclockwise direc
tion about the original z-axis through an angle, 8 = tan-' [ Qx/Qy ] ,until the x-axis of the 

Aoriginal system and the projection of Q on the x-y plane are colinear. The matrix for.this 
rotation is: 

sin6 c o s 6 1  

cos 0 -sin 6,Re, - [ 0 

1 0 0 

Next, a counterclockwise rotation is made through the angle, 

A
about the new y-axis until the z-axis is aligned with (colinear) the unit vector, (2. The matrix 
for this rotation is: 



The total rotation matrix is [ R 3 = [ R6 1 [ R, 3 .  Thus, denoting the new coordinates by 
I t  . . I I  . . I )

(x YY YZ )Y 

The inverse matrix is the transpose of [ R 1. 


Of special interest is the transformation of the z-coordinate, which takes the form,

A A Az" ='!2 A -7wheref= (xx + yy + zz). 
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APPENDIX C 

COMPLETE SOLUTION IN THE FRAUNHOFER REGION 

When pi >>L, pi may be expanded in a power series about the distance from the observer to 
the center of the current filament. Keeping only the first few terms, 

- -
pi = I ( T ~  - r,) + (7, - ri) I 

where 

- ( T  - ri) ($ - r,) 
cos$, = -

IT, - ri I I$ - 7, I 

and by noting that 

--rc - r i = + ~ t{ + for i = a 
2 - for i = b 

the following form is obtained: 

A 
cos@, = f 12 v p C  (C4) 

where p, = IFo-Fc I is the distance from the observer to the center of the filament. 

Now, assume that p, is sufficiently greater that L so that pi N p, in all terms in the expres
sion for electric field except perhaps where it is multiplied by k,as in the exponentials, 
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expuk p, ) ;  and assume that kL2 / p, is sufficiently small that the last (and all subsequent) 
terms in the expansion in equation C1 are negligible even in the exponentials. Then, 

where the (+) pertains for i = a and the (-) for i = b. Finally, assume that k p, is sufficiently 
large that only terms of lowest order in l /k  p, need to  be considered. Then, only the radia
tion terms in T ( p i )  are significant and: 

where the (+) is associated with i = b, and the (-) is associated with i = a, and 

A
The following relationship for Q ri has been employed: 

A -Q -7= @ (7- rc + T ~ >  

A= Q .  - *L{-for i = a 
rc 2 + for i = b 

6 similar result holds for the image terms. By combining the results into an expression for 
I?(, ,v), the following form is obtained for equation 1 1 : 
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where p:  is the distance from the observer to the center of the image filament. Comparison 
of equation C9 with the solution obtained by making the far-field approximations before 
integrating (equations 3l a  and 31b) shows that they are identical. That is, the exact solution 
and the approximate solution converge to the same result in the fraunhofer region. 
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APPENDIX D 

FREQUENCY DEPENDENCE 

This appendix examines the frequency dependence of both the complete and far-field solu
tions in the special case of an observer on the surface. Because the location of the observer 
would not be expected to qualitatively effect observations made about frequency dependence 
and because the solutions are easier to  handle than otherwise when the observer is located 
on the surface, this case has been chosen for analysis. 

Consider first the complete solution, and examine the magnitude of the spectrum of the 
electric field. Then, as shown in equation E8, 

hd K v ) - *-E*(F0,v) =& IT(v) I { la l 2  + 10 l 2  - 2Re(aP*)  

(D1) 

cos k (L + p, - pa)  - 2 Im ( a p * )  sin k (L + pb - pa)} '/2 

where 

1 / l + L V p . ,  

Q vp, KPb 

A
and where the relationship, 2 (Tb -f) = L, has been employed. When the frequency is 
large enough for the imaginary components of a and /3 to be negligible, 

-
IF(v) I - da2 + p2 - 2 a p c o s k ( L  + pb - pa) 
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This radical oscillates between the extremes of I a + /3 I and I a - p  I ,and, consequently,N 

the mean behavior at large frequencies is determined by I f(v) I., the magnitude of the spec
trum of the current waveform. On the other hand, at  low frequencies, the radical in equa
tion Dl is singular because of the l /kp dependence of the nonradiation terms, Im a and 
Im p . This fact is easily seen by rewriting the radical in the following form: 

4- = { [ (Re a)2 + (Re p)2 - 2 (Re a)  (Re 0)cos k (L + p, - p a )  ] + 

- 2 Im (ap* )sin k (L + pb - p a )  ] '/z 

In the limit of small k, equation D5 becomes: 

The first and last terms in equation D6 are independent of k, the limit of small k, and the 
remaining factor, [ Im (x - Im 03 2 ,  depends on (1 /k P ) ~ .Hence, as k p becomes small, the 
radical becomes large, and the spectrum varies as IF(v) I I Im a - Im p I . On the other hand, 
if only the radiation terms are considered, the radical approaches the constant value, I Re a 
- Re I, for small k. Consequently, the spectrum that is attributable to only the radiation 
terms varies as I R v )  Iin both the large and small frequency extremes. At small frequencies, 
the spectrkm attributable to  only the radiation components approaches a limit that is propor
tional to If(0) I, but the spectrum attributable to the complete solution blows up as l /k  
because of the singularity in the nonradiation fields at zero frequency. 

Next, consider the frequency dependence of the far-field solutions. As shown in equation 
E l  1 for the far-field solution observed at the surface, 

-N -N 

d E ( T o , v )  * E * ( q , v )  = 
(D7) 

56 




For large frequencies, the right-hand side of equation D7 oscillates from a maximum of 

to a minimum of zero. To a first approximation, this is the same as the high-frequency be
havior of the complete solution shown in Appendix C. However, at low frequencies, this 
solution depends on k I Rv) I ,  in contrast to the complete solution which appears as 
I@v) I /k if the nonradiation terms are kept or as I T ( v )  I if only the radiation terms are 
considered. Examples of the spectrum predicted by the far-field solution with the exponen
tial current waveform (Appendix F) were plotted previously in figures 2 through 6. Both 
the radiation terms of the complete solution and the far-field solution are plotted together 
for the exponential current waveform. Note the drop in the spectrum as I/k in the far-field 
solution at low frequencies and note that both the complete and far-field solutions approxi
mate each other at high frequency. 
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APPENDIX E 

FIELDS ON THE SURFACE 

When the observer is on the surface (i.e., zo = O), a symmetry exists at the observation point 
with respect to  the source and image that results in simplification of the solutions. In par
ticular, when zo = 0, the following relationships are obtained for i = a, b: 

I 
p. = p. (El )  

AQ 	' Vp, = $ 1  9 v p ;  
A A
Q * Ti = Q' - T! 

and, because 
A A  

vp; = vp i  - 2 ( V p ,  z ) z  (E41 

then 


A A  vp, - vp ;  = 2(Vp ,  * z ) z  (E7) 

By substituting these relationships into equations 11 and 15 of the text, the following forms 

are obtained for the complete solution as measured by an observer located on the surface: 
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where 


Also, substituting the foregoing relationships into equations 31a and 31b of the text, the 
following form is obtained for the far-field solution as seen by an observer located on the 
surface: 

Note that in both equations El  1 and El 2, the electric field intensity is Edirected and that 
ho(pi) $=0 for i = a, b, c. Thus, the electric field is perpendicular to the surface, and the 
magnetic field is tangent to the surface as is required at a perfectly conducting boundary. 
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APPENDIX F 

DISTRIBUTION OF MINIMA FOR THE 
APPROXIMATE SOLUTION 

The approximate solution for the ifhcomponent of the E field can be written as 

Zeros of Ei occur when Ei’ = Ei2,  the most important special case of which is 
Ei’ = Ei2 = 0, or equivalently, 

%kL(r) - /d‘ Vp,) = n aiYzkL(77 - 8 ’  - Vp:) = m n  
n, m non zero integers (F2) 

Equation F2  states that a zero of Ei occurs when the arguments of the sine terms in equa
tion F l are equal t o  integer multiples of a. Alternatively, these conditions may be written 
as 

?hkL(q - 6 Vp,) = n a  
Ai?hkL( t ’  - Vpi  - Q - Vp,) = Q n  

n, Q integers n # 0 (F3) 

Using v = ck/2a, the frequencies for which Ei = 0 are given by 

65 

I - & 



where 

A 
COS$ E R Qp, 

! - A I .C O S @  = R Qp: 

The geometrical constraint, implicit in the foregoing equations, is that, 

To consider the simplest case first, let the observer be located on the perfectly conducting
A A,plane, (Z = 0). Then, 2 Vp,  = 2 Vp:, and conditions of equation F2 are identical 

(i.e., m = n). The frequency at which E, first goes to  zero is 

C-
- L(7) - cos 4) 

Because the zeros are equally spaced, the zero density for a fixed geometry is constant and 
is given by 

d = L ( Q  - COS $)/c 

In summary, as L ( 7) - cos cp) increases, the first zero shifts toward lower frequencies and 
the zero density increases and vice versa. Finally, note that, as 7)+ 1 (v + c), the zero density 
and first zero become increasingly sensitive to changes in the angle. 

For an arbitrary placement of the observer, the analysis is more involved. However, a few 
qualitative statements can be made: 

(a) For an observer above the conducting plane, the probability of satisfying the 
geometrical constraints imposed by equation F2 is zero. Consequently, the probability of 
Ei = 0, under conditions (i), is zero. 

(b) To investigate the minima of Ei, it  is helpful to make use of the following 
definitions: 

A 

wl = m (P, + 77 (2 * rc)) 
u o  = (a1+ 4 / 2  
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Then, IEi I can be expressed in the form: 

kL kL 
IE, I = Icos A k [C, sin -2 (q - cos 4) - CI sin -

2 
(q - cos 4’) 1 

kL kL
-sin Ak [ Ci sin -2 ( r )  - cos 4) + C; din -2 (q - cos 4’) I I 

(c) Special cases: 


For C,/Ci >> 1, I Ei Iis minimized at frequencies 3 ‘/z kL (q - cos 4) % 2 T n. 


For C,/Cl << 1, IE, I is minimized at frequencies 3 ?hkL. (q - cos 4’) % 2 T m. 

For observation points very close to  the conducting plane, Ak<<l ,Ci/Ci % 1,strong 
minima are expected at the frequencies 

vn = cn/L(q - cos@) 

(d) When none of the foregoing conditions hold, the following procedure seems to  
give reliable results: 

vm = cm/L(q - cos@’) 

vn = cn/L(q - cos@) 

An estimate of the first frequency at which Ei has a well-defined minima is then given by 

After vc is computed, the density of minima and all subsequent minima can be found. 
1 

For example, consider the spectrum of the field for the case of a 50-m vertical element as 
seen by an observer situated at lo4( / O , O ,  / fi)(shown previously in figure 35). 

Then, 

v - 20.8MHz 
c1 

- 41.6 MHz 
vc2 

v 	 - 62.4 MHz 
=3 
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v - 83.2 MHz 
c4 

v - 104MHz 
c5 

These values compare favorably with the values obtained by a high-resolution plot of equa
tion F1 for this case; i.e., 

9 vc2 ’ vc3 ,l.’c4 ,vc ) = (21,42,61,  81, 102) MHz 

(e) From the preceding discussion, it is evident that the relative magnitudes of 
Ci, Ci affect the location of the minima. In general, 

ci A c.
1 

(i + j )
c; =k c; 

Therefore, a possibility exists that the minima of the various field components will occur at 
significantly different frequencies. Examples of this effect were shown previously in figures 
17 and 18. 
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= &  - fC 12 + kc - i=' l 2  + 2(F0 - TC) - (f - F') 

(To - Fc) * ( Fc - 7') 
cos (6 = I 

ITo - fc  I Ifc - i=' I 

- !'+- 1 

k2 
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