375 research outputs found

    Microwave Active Filter Design

    Get PDF
    A simplified method for the project and design of microwave active filters is presented here. The presented design is based on the use of an active inductor that emulates an inductor behavior by implementing a passive variable phase- and amplitude-compensating network and amplifiers, forming a gyrator-C architecture. This method can be applied with success for the design of bandpass filters with very high performances in terms of integration and application from a few hundreds of MHz to tens of GHs with filter high dynamic range and frequency tuning capability

    Molecular analysis of PKU-associated PAH mutations: a fast and simple genotyping test

    Get PDF
    Abstract: Neonatal screening for phenylketonuria (PKU, OMIM: 261600) was introduced at the end of the 1960s. We developed a rapid and simple molecular test for the most frequent phenylalanine hydroxylase (PAH, Gene ID: 5053) mutations. Using this method to detect the 18 most frequent mutations, it is possible to achieve a 75% detection rate in Italian population. The variants selected also reach a high detection rate in other populations, for example, 70% in southern Germany, 68% in western Germany, 76% in Denmark, 68% in Sweden, 63% in Poland, and 60% in Bulgaria. We successfully applied this confirmation test in neonatal screening for hyperphenylalaninemias using dried blood spots and obtained the genotype in approximately 48 h. The method was found to be suitable as second tier test in neonatal screening for hyperphenylalaninemias in neonates with a positive screening test. This test can also be useful for carrier screening because it can bypass the entire coding sequence and intron–exon boundaries sequencing, thereby overcoming the questions that this approach implies, such as new variant interpretations

    Living with phenylketonuria in adulthood: the PKU ATTITUDE study

    Get PDF
    Dietary treatment is the cornerstone of therapy for phenylketonuria (PKU), but adherence to low- phenylalanine diet progressively decreases after adolescence. We designed a survey to characterize the dietary habits of Italian adult PKU patients and to identify psychological factors influencing disease perception and adherence to diet. Participants to the survey (n = 111; response rate 94%) were asked to complete a structured questionnaire. Patients appeared to have an altered perception and awareness of the disease. About 40% of them did not consider PKU a disease and, despite declaring regular monitoring of phenylalanine levels (85%), nearly half of them reported a high plasma value over the last 6 months (>600 μmol/L, 48%) or were unable to specify it (31%). Adherence to PKU diet was unsatisfactory, with increased consumption of natural protein sources and reduced daily use of amino-acid supplements (<4–5 times/day in 82% patients). In addition to the intrinsic characteristics of AA formula (palatability, ease of use), the most important factor influencing their consumption was the increased social pressure associated with their use (55%). Plasma phenylalanine periodical measurements (61%) and examinations at metabolic centers (49%) were considered relevant for compliance to diet. In Italian adult PKU patients dietary management was found to be inadequate, likely due to inappropriate perception and knowledge of the disease, and lack of awareness of the negative impact of poor metabolic control in adult life. Clinicians should consider implementing more intense and tailored educational measures, as well as structured transitional care processes

    Executive function impairment in early - treated PKU subjects with normal mental development

    Get PDF
    Executive functions were studied in 14 early and continuously treated PKU subjects (age 10.8 years, range 8-13) in comparison with controls matched for IQ, sex, age and socioeconomic status. Brain MRI examination was normal in all PKU patients. Neuropsychological evaluation included Wisconsin Card Sorting Test, Rey-Osterreith Complex Figure Test, Elithorn's Perceptual Maze Test, Weigl's Sorting Test, Tower of London, Visual Search and Motor Motor Learning Test. Whatever the IQ, PKU subjects performed worse than controls in tests exploring executive functions. Subgrouping the PKU subjects according to the quality of dietary control for the entire follow-up period (using 400 micromol/L as cut-off value for blood phenylalanine (Phe) concentration) showed that patients with worse dietary control performed more poorly than both the PKU group with the best dietary control and the control group. However, a mild impairment of executive functions was still found in PKU patients with a good dietary control (Phe 400 micromol/L) compared to controls. Concerning the PKU group as a whole, no linear correlation was found between neuropsychological performance and historical and concurrent biochemical parameters. We conclude that (a) PKU patients, even when treated early, rigorously and continuously, show an impairment of frontal lobe functions; (b) a protracted exposure to moderately high levels of Phe can affect frontal lobe functions independently of the possible effect of the same exposure on IQ; (c) in order to reduce the risk of frontal lobe dysfunction, the target of dietary therapy should be to maintain blood Phe concentration below 400 micromol/L

    Biochemical data from the characterization of a new pathogenic mutation of human pyridoxine-5'-phosphate oxidase (PNPO)

    Get PDF
    PNPO deficiency is responsible of severe neonatal encephalopathy, responsive to pyridoxal-5’-phosphate (PLP) or pyridoxine. Recent studies widened the phenotype of this condition and detected new genetic variants on PNPO gene, whose pathogenetic role and clinical expression remain to be established. One of these mutations, Arg116Gln, is of particular interest because of its later onset of symptoms (beyond the first months of life) and its peculiar epileptic manifestations in patients. This protein variant was expressed as recombinant protein in E coli, purified to homogeneity, and characterized with respect to structural and kinetic properties, stability, binding constants of cofactor flavin mononucleotide (FMN) and product (PLP) in order to define the molecular and structural bases of its pathogenicity. For interpretation and discussion of reported data, together with the description of clinical studies, refer to the article [7][1] (doi: 10.1016/j.ymgme.2017.08.003)

    Motor, epileptic, and developmental phenotypes in genetic disorders affecting G protein coupled receptors-cAMP signaling

    Get PDF
    Over the last years, a constantly increasing number of genetic diseases associated with epilepsy and movement disorders have been recognized. An emerging group of conditions in this field is represented by genetic disorders affecting G-protein-coupled receptors (GPCRs)-cAMP signaling. This group of postsynaptic disorders includes genes encoding for proteins highly expressed in the central nervous system and involved in GPCR signal transduction and cAMP production (e.g., GNAO1, GNB1, ADCY5, GNAL, PDE2A, PDE10A, and HPCA genes). While the clinical phenotype associated with ADCY5 and GNAL is characterized by movement disorder in the absence of epilepsy, GNAO1, GNB1, PDE2A, PDE10A, and HPCA have a broader clinical phenotype, encompassing movement disorder, epilepsy, and neurodevelopmental disorders. We aimed to provide a comprehensive phenotypical characterization of genetic disorders affecting the cAMP signaling pathway, presenting with both movement disorders and epilepsy. Thus, we reviewed clinical features and genetic data of 203 patients from the literature with GNAO1, GNB1, PDE2A, PDE10A, and HPCA deficiencies. Furthermore, we delineated genotype-phenotype correlation in GNAO1 and GNB1 deficiency. This group of disorders presents with a highly recognizable clinical phenotype combining distinctive motor, epileptic, and neurodevelopmental features. A severe hyperkinetic movement disorder with potential life-threatening exacerbations and high susceptibility to a wide range of triggers is the clinical signature of the whole group of disorders. The existence of a distinctive clinical phenotype prompting diagnostic suspicion and early detection has relevant implications for clinical and therapeutic management. Studies are ongoing to clarify the pathophysiology of these rare postsynaptic disorders and start to design disease-specific treatments

    Targeting mGlu5 metabotropic glutamate receptors in the treatment of cognitive dysfunction in a mouse model of phenylketonuria

    Get PDF
    We studied group-I metabotropic glutamate (mGlu) receptors in Pah(enu2) (ENU2) mice, which mimic the genetics and neurobiology of human phenylketonuria (PKU), a metabolic disorder characterized, if untreated, by autism, and intellectual disability (ID). Male ENU2 mice showed increased mGlu5 receptor protein levels in the hippocampus and corpus striatum (but not in the prefrontal cortex) whereas the transcript of the mGlu5 receptor was unchanged. No changes in mGlu1 receptor mRNA and protein levels were found in any of the three brain regions of ENU2 mice. We extended the analysis to Homer proteins, which act as scaffolds by linking mGlu1 and mGlu5 receptors to effector proteins. Expression of the long isoforms of Homer was significantly reduced in the hippocampus of ENU2 mice, whereas levels of the short Homer isoform (Homer 1a) were unchanged. mGlu5 receptors were less associated to immunoprecipitated Homer in the hippocampus of ENU2 mice. The lack of mGlu5 receptor-mediated long-term depression (LTD) in wild-type mice (of BTBR strain) precluded the analysis of hippocampal synaptic plasticity in ENU2 mice. We therefore performed a behavioral analysis to examine whether pharmacological blockade of mGlu5 receptors could correct behavioral abnormalities in ENU2 mice. Using the same apparatus we sequentially assessed locomotor activity, object exploration, and spatial object recognition (spatial novelty test) after displacing some of the objects from their original position in the arena. Systemic treatment with the mGlu5 receptor antagonist, MPEP (20 mg/kg, i.p.), had a striking effect in the spatial novelty test by substantially increasing the time spent in exploring the displaced objects in ENU2 mice (but not in wild-type mice). These suggest a role for mGlu5 receptors in the pathophysiology of ID in PKU and suggest that, also in adult untreated animals, cognitive dysfunction may be improved by targeting these receptors with an appropriate therapy

    Case report: Childhood epilepsy and borderline intellectual functioning hiding an AADC deficiency disorder associated with compound heterozygous DDC gene pathogenic variants

    Get PDF
    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive neurometabolic disorder leading to severe combined serotonin, dopamine, norepinephrine, and epinephrine deficiency. We report on a female patient with borderline functioning and sporadic clear-cut focal to bilateral seizures from age 10 years. A neuropsychological assessment highlighted a mild impairment in executive functions, affecting attention span and visual-spatial abilities. Following the diagnosis of epilepsy with a presumed genetic etiology, we applied a diagnostic approach inclusive of a next-generation sequencing (NGS) gene panel, which uncovered two variants in trans in the DOPA decarboxylase (DDC) gene underlying an AADC deficiency. This compound heterozygous genotype was associated with a mild reduction of homovanillic acid, a low level of the norepinephrine catabolite, and a significant reduction of 5-hydroxyindoleacetic acid in cerebrospinal fluid. Remarkably, 3-O-methyldopa (3-OMD) and 5-hydroxytryptophan were instead increased. During the genetically guided re-evaluation process, some mild signs of dysautonomic dysfunction (nasal congestion, abnormal sweating, hypotension and fainting, excessive sleepiness, small hands and feet, and increased levels of prolactin, tiredness, and fatigue), more typical of AADC deficiency, were evaluated with new insight. Of the two AADC variants, the R347Q has already been characterized as a loss-of-function with severe catalytic impairments, while the novel L391P variant has been predicted to have a less severe impact. Bioinformatic analyses suggest that the amino acid substitution may affect affinity for the PLP coenzyme. Thus, the genotype corresponds to a phenotype with mild and late-onset symptoms, of which seizures were the clinical sign, leading to medical attention. This case report expands the spectrum of AADC deficiency phenotypes to encompass a less-disabling clinical condition including borderline cognitive functioning, drug-responsive epilepsy, and mild autonomic dysfunction
    • …
    corecore