625 research outputs found

    Projective duals to algebraic and tropical hypersurfaces

    Get PDF
    We study a tropical analogue of the projective dual variety of a hypersurface. When XX is a curve in P2\mathbb{P}^2 or a surface in P3\mathbb{P}^3, we provide an explicit description of Trop(X)\text{Trop}(X^*) in terms of Trop(X)\text{Trop}(X), as long as Trop(X)\text{Trop}(X) is smooth and satisfies a mild genericity condition. As a consequence, when XX is a curve we describe the transformation of Newton polygons under projective duality, and recover classical formulas for the degree of a dual plane curve. For higher dimensional hypersurfaces XX, we give a partial description of Trop(X)\text{Trop}(X^*).Comment: 47 pages, 13 figures; v2 minor revisions; accepted to PLM

    Embedding Population Dynamics Models in Inference

    Full text link
    Increasing pressures on the environment are generating an ever-increasing need to manage animal and plant populations sustainably, and to protect and rebuild endangered populations. Effective management requires reliable mathematical models, so that the effects of management action can be predicted, and the uncertainty in these predictions quantified. These models must be able to predict the response of populations to anthropogenic change, while handling the major sources of uncertainty. We describe a simple ``building block'' approach to formulating discrete-time models. We show how to estimate the parameters of such models from time series of data, and how to quantify uncertainty in those estimates and in numbers of individuals of different types in populations, using computer-intensive Bayesian methods. We also discuss advantages and pitfalls of the approach, and give an example using the British grey seal population.Comment: Published at http://dx.doi.org/10.1214/088342306000000673 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Droplet motion driven by surface freezing or melting: A mesoscopic hydrodynamic approach

    Full text link
    A fluid droplet may exhibit self-propelled motion by modifying the wetting properties of the substrate. We propose a novel model for droplet propagation upon a terraced landscape of ordered layers formed as a result of surface freezing driven by the contact angle dependence on the terrace thickness. Simultaneous melting or freezing of the terrace edge results in a joint droplet-terrace motion. The model is tested numerically and compared to experimental observations on long-chain alkane system in the vicinity of the surface melting point.Comment: 4 pages, 3 figure

    On Open and Collaborative Software Development in the DoD

    Get PDF
    Proceedings Paper (for Acquisition Research Program)The US Department of Defense (specifically, but not limited to, the DoD CIO Clarifying Guidance Regarding Open Source Software, DISA launch of Forge.mil and OSD Open Technology Development Roadmap Plan) has called for increased use of open source software and the adoption of best practices from the free/open source software (F/OSS) community to foster greater reuse and innovation between programs in the DoD. In our paper, we examine some key aspects of open and collaborative software development inspired by the success of the F/OSS movement as it might manifest itself within the US DoD. This examination is made from two perspectives: the reuse potential among DoD programs sharing software and the incentives, strategies and policies that will be required to foster a culture of collaboration needed to achieve the benefits indicative of F/OSS. Our conclusion is that to achieve predictable and expected reuse, not only are technical infrastructures needed, but also a shift to the business practices in the software development and delivery pattern seen in the traditional acquisition lifecycle is needed. Thus, there is potential to overcome the challenges discussed within this paper to engender a culture of openness and community collaboration to support the DoD mission.Naval Postgraduate School Acquisition Research ProgramApproved for public release; distribution is unlimited

    Relevance of the rat lung tumor response to particle overload for human risk assessment—Update and interpretation of new data since ILSI 2000

    Get PDF
    The relevance of particle-overload related lung tumors in rats for human risk assessment following chronic inhalation exposures to poorly soluble particulates (PSP) has been a controversial issue for more than three decades. In 1998, an ILSI (International Life Sciences) Working Group of health scientists was convened to address this issue of applicability of experimental study findings of lung neoplasms in rats for lifetime-exposed production workers to PSPs. A full consensus view was not reached by the Workshop participants, although it was generally acknowledged that the findings of lung tumors in rats following chronic inhalation, particle-overload PSP exposures occurred only in rats and no other tested species; and that there was an absence of lung cancers in PSP-exposed production workers. Since the publication of the ILSI Workshop report in 2000, there have been important new data published on the human relevance issue. A thorough and comprehensive review of the health effects literature on poorly soluble particles/lung overload was undertaken and published by an ECETOC (European Centre for Ecotoxicology and Toxicology of Chemicals) Task Force in 2013. One of the significant conclusions derived from that technical report was that the rat is unique amongst all species in developing lung tumors under chronic inhalation overload exposures to PSPs. Accordingly, the objective of this review is to provide important insights on the fundamental differences in pulmonary responses between experimentally-exposed rats, other experimental species and occupationally-exposed humans. Briefly, five central factors are described by the following issues. • Interspecies differences in lung responses of rats vs. other rodents, triggering different adverse outcome pathways (AOPs); • Interspecies differences in inhaled particle kinetics in rats vs nonhuman primates and humans triggering differential particle-related pulmonary responses. • Advanced and updated human respiratory tract deposition and retention models allowing more realistic particle translocation/retention estimates. • Differences in morphologies and characterizations of rat vs. human pulmonary tumor types and locations within the respiratory tract. • Comprehensive in-depth analysis of available epidemiological data from PSP production workers that demonstrate no correlation between particle exposures and lung cancers or other non-malignant respiratory diseases. Focusing on these five interrelated/convergent factors clearly demonstrate an inappropriateness in concluding that the findings of lung tumors in rats exposed chronically to high concentrations of PSPs are accurate representations of the risks of lung cancer in PSP-exposed production workers. The most plausible conclusion that can be reached is that results from chronic particle-overload inhalation studies with PSPs in rats have no relevance for determining lung cancer risks in production workers exposed for a working lifetime to these poorly soluble particulate-types

    Inter-annual and seasonal trends in cetacean distribution, density and abundance off southern California

    Get PDF
    The article of record as published may be located at https://doi.org/10.1016/j.dsr2.2014.10.008Funded by Naval Postgraduate SchoolTrends in cetacean density and distribution off southern California were assessed through visual line- transect surveys during thirty-seven California Cooperative Oceanic Fisheries Investigations (CalCOFI) cruises from July 2004–November 2013. From sightings of the six most commonly encountered cetacean species, seasonal, annual and overall density estimates were calculated. Blue whales (Balaenoptera musculus), fin whales (Balaenoptera physalus) and humpback whales (Megaptera novaeangliae) were the most frequently sighted baleen whales with overall densities of 0.91/1000 km2 (CV 1⁄4 0.27), 2.73/ 1000 km2 (CV 1⁄4 0.19), and 1.17/1000 km2 (CV 1⁄4 0.21) respectively. Species specific density estimates, stratified by cruise, were analyzed using a generalized additive model to estimate long-term trends and correct for seasonal imbalances. Variances were estimated using a non-parametric bootstrap with one day of effort as the sampling unit. Blue whales were primarily observed during summer and fall while fin and humpback whales were observed year-round with peaks in density during summer and spring respectively. Short-beaked common dolphins (Delphinus delphis), Pacific white-sided dolphins (Lagen- orhynchus obliquidens) and Dall’s porpoise (Phocoenoidesdalli) were the most frequently encountered small cetaceans with overall densities of 705.83/1000 km2 (CV1⁄40.22), 51.98/1000 km2 (CV1⁄40.27), and 21.37/1000 km2 (CV 1⁄4 0.19) respectively. Seasonally, short-beaked common dolphins were most abun- dant in winter whereas Pacific white-sided dolphins and Dall’s porpoise were most abundant during spring. There were no significant long-term changes in blue whale, fin whale, humpback whale, short- beaked common dolphin or Dall’s porpoise densities while Pacific white-sided dolphins exhibited a significant decrease in density across the ten-year study. The results from this study were fundamentally consistent with earlier studies, but provide greater temporal and seasonal resolution.Funding was provided by the Chief of Naval Operations Environmental Readiness Division, the United States Navy’s Pacific Fleet, the Naval Postgraduate School Grant #N00244-11-1-027, and the Naval Facilities Engineering Command Living Marine Resources Pro- gramFunding was provided by the Chief of Naval Operations Environmental Readiness Division, the United States Navy’s Pacific Fleet, the Naval Postgraduate School Grant #N00244-11-1-027, and the Naval Facilities Engineering Command Living Marine Resources Pro- gra
    corecore