5,972 research outputs found

    BLACK HOLES IN THREE-DIMENSIONAL DILATON GRAVITY THEORIES

    Get PDF
    Three dimensional black holes in a generalized dilaton gravity action theory are analysed. The theory is specified by two fields, the dilaton and the graviton, and two parameters, the cosmological constant and the Brans-Dicke parameter. It contains seven different cases, of which one distinguishes as special cases, string theory, general relativity and a theory equivalent to four dimensional general relativity with one Killing vector. We study the causal structure and geodesic motion of null and timelike particles in the black hole geometries and find the ADM masses of the different solutions.Comment: 19 pages, latex, 4 figures as uuencoded postscript file

    Collapsing shells of radiation in anti-de Sitter spacetimes and the hoop and cosmic censorship conjectures

    Get PDF
    Gravitational collapse of radiation in an anti-de Sitter background is studied. For the spherical case, the collapse proceeds in much the same way as in the Minkowski background, i.e., massless naked singularities may form for a highly inhomogeneous collapse, violating the cosmic censorship, but not the hoop conjecture. The toroidal, cylindrical and planar collapses can be treated together. In these cases no naked singularity ever forms, in accordance with the cosmic censorship. However, since the collapse proceeds to form toroidal, cylindrical or planar black holes, the hoop conjecture in an anti-de Sitter spacetime is violated.Comment: 4 pages, Revtex Journal: to appear in Physical Review

    The Three-Dimensional BTZ Black Hole as a Cylindrical System in Four-Dimensional General Relativity

    Full text link
    It is shown how to transform the three dimensional BTZ black hole into a four dimensional cylindrical black hole (i.e., black string) in general relativity. This process is identical to the transformation of a point particle in three dimensions into a straight cosmic string in four dimensions.Comment: Latex, 9 page

    Gravitational collapse to toroidal, cylindrical and planar black holes

    Full text link
    Gravitational collapse of non-spherical symmetric matter leads inevitably to non-static external spacetimes. It is shown here that gravitational collapse of matter with toroidal topology in a toroidal anti-de Sitter background proceeds to form a toroidal black hole. According to the analytical model presented, the collapsing matter absorbs energy in the form of radiation (be it scalar, neutrinos, electromagnetic, or gravitational) from the exterior spacetime. Upon decompactification of one or two coordinates of the torus one gets collapsing solutions of cylindrical or planar matter onto black strings or black membranes, respectively. The results have implications on the hoop conjecture.Comment: 6 pages, Revtex, modifications in the title and in the interpretation of some results, to appear in Physical Review

    Rotating Relativistic Thin Disks

    Get PDF
    Two families of models of rotating relativistic disks based on Taub-NUT and Kerr metrics are constructed using the well-known "displace, cut and reflect" method. We find that for disks built from a generic stationary axially symmetric metric the "sound velocity", (pressure/density)1/2(pressure/density)^{1/2}, is equal to the geometric mean of the prograde and retrograde geodesic circular velocities of test particles moving on the disk. We also found that for generic disks we can have zones with heat flow. For the two families of models studied the boundaries that separate the zones with and without heat flow are not stable against radial perturbations (ring formation).Comment: 18 eps figures, to be published PR

    Gravitational magnetic monopoles and Majumdar-Papapetrou stars

    Full text link
    A large amount of work has been dedicated to studying general relativity coupled to non-Abelian Yang-Mills type theories. It has been shown that the magnetic monopole, a solution of the Yang-Mills-Higgs equations can be coupled to gravitation. For a low Higgs mass there are regular solutions, and for a sufficiently massive monopole the system develops an extremal magnetic Reissner-Nordstrom quasi-horizon. These solutions, called quasi-black holes, although non-singular, are arbitrarily close to having a horizon. However, at the critical value the quasi-black hole turns into a degenerate spacetime. On the other hand, for a high Higgs mass, a sufficiently massive monopole develops also a quasi-black hole, but it turns into an extremal true horizon, with matter fields outside. One can also put a small Schwarzschild black hole inside the magnetic monopole, an example of a non-Abelian black hole. Surprisingly, Majumdar-Papapetrou systems, Abelian systems constructed from extremal dust, also show a resembling behavior. Previously, we have reported that one can find Majumdar-Papapetrou solutions which can be arbitrarily close of being a black hole, displaying quasi-black hole behavior. With the aim of better understanding the similarities between gravitational monopoles and Majumdar-Papapetrou systems, we study a system composed of two extremal electrically charged spherical shells (or stars, generically) in the Einstein--Maxwell--Majumdar-Papapetrou theory. We review the gravitational properties of the monopoles, and compare with the properties of the double extremal electric shell system. These quasi-black holes can help in the understanding of true black holes, and can give insight into the nature of the entropy of black holes in the form of entanglement.Comment: 38 pages,9 Figures, minor change

    Electrically charged fluids with pressure in Newtonian gravitation and general relativity in d spacetime dimensions: theorems and results for Weyl type systems

    Full text link
    Previous theorems concerning Weyl type systems, including Majumdar-Papapetrou systems, are generalized in two ways, namely, we take these theorems into d spacetime dimensions (d4{\rm d}\geq4), and we also consider the very interesting Weyl-Guilfoyle systems, i.e., general relativistic charged fluids with nonzero pressure. In particular within Newton-Coulomb theory of charged gravitating fluids, a theorem by Bonnor (1980) in three-dimensional space is generalized to arbitrary (d1)>3({\rm d}-1)>3 space dimensions. Then, we prove a new theorem for charged gravitating fluid systems in which we find the condition that the charge density and the matter density should obey. Within general relativity coupled to charged dust fluids, a theorem by De and Raychaudhuri (1968) in four-dimensional spacetimes in rendered into arbitrary d>4{\rm d}>4 dimensions. Then a theorem, new in d=4{\rm d}=4 and d>4{\rm d}>4 dimensions, for Weyl-Guilfoyle systems, is stated and proved, in which we find the condition that the charge density, the matter density, the pressure, and the electromagnetic energy density should obey. This theorem comprises, as particular cases, a theorem by Gautreau and Hoffman (1973) and results in four dimensions by Guilfoyle (1999). Upon connection of an interior charged solution to an exterior Tangherlini solution (i.e., a Reissner-Nordstr\"om solution in d-dimensions), one is able to give a general definition for gravitational mass for this kind of relativistic systems and find a mass relation with the several quantities of the interior solution. It is also shown that for sources of finite extent the mass is identical to the Tolman mass.Comment: 27 page

    Membrane paradigm and entropy of black holes in the Euclidean action approach

    Full text link
    The membrane paradigm approach to black holes fixes in the vicinity of the event horizon a fictitious surface, the stretched horizon, so that the spacetime outside remains unchanged and the spacetime inside is vacuum. Using this powerful method, several black hole properties have been found and settled, such as the horizon's viscosity, electrical conductivity, resistivity, as well as other properties. On the other hand the Euclidean action approach to black hole spacetimes has been very fruitful in understanding black hole entropy. Combining both the Euclidean action and membrane paradigm approaches a direct derivation of the black hole entropy is given. In the derivation it is considered that the only fields present are the gravitational and matter fields, with no electric field.Comment: 13 page

    Geometric Properties of Static EMdL Horizons

    Full text link
    We study non-degenerate and degenerate (extremal) Killing horizons of arbitrary geometry and topology within the Einstein-Maxwell-dilaton model with a Liouville potential (the EMdL model) in d-dimensional (d>=4) static space-times. Using Israel's description of a static space-time, we construct the EMdL equations and the space-time curvature invariants: the Ricci scalar, the square of the Ricci tensor, and the Kretschmann scalar. Assuming that space-time metric functions and the model fields are real analytic functions in the vicinity of a space-time horizon, we study behavior of the space-time metric and the fields near the horizon and derive relations between the space-time curvature invariants calculated on the horizon and geometric invariants of the horizon surface. The derived relations generalize the similar relations known for horizons of static four and 5-dimensional vacuum and 4-dimensional electrovacuum space-times. Our analysis shows that all the extremal horizon surfaces are Einstein spaces. We present necessary conditions for existence of static extremal horizons within the EMdL model.Comment: 10 page

    The Asymptotic Dynamics of two-dimensional (anti-)de Sitter Gravity

    Get PDF
    We show that the asymptotic dynamics of two-dimensional de Sitter or anti-de Sitter Jackiw-Teitelboim (JT) gravity is described by a generalized two-particle Calogero-Sutherland model. This correspondence is established by formulating the JT model of (A)dS gravity in two dimensions as a topological gauge theory, which reduces to a nonlinear 0+1-dimensional sigma model on the boundary of (A)dS space. The appearance of cyclic coordinates allows then a further reduction to the Calogero-Sutherland quantum mechanical model.Comment: 16 pages, LaTeX, no figures, uses JHEP.cls. v2: Some references and comments added. v3: Minor errors correcte
    corecore