9,193 research outputs found
Collapsing shells of radiation in anti-de Sitter spacetimes and the hoop and cosmic censorship conjectures
Gravitational collapse of radiation in an anti-de Sitter background is
studied. For the spherical case, the collapse proceeds in much the same way as
in the Minkowski background, i.e., massless naked singularities may form for a
highly inhomogeneous collapse, violating the cosmic censorship, but not the
hoop conjecture. The toroidal, cylindrical and planar collapses can be treated
together. In these cases no naked singularity ever forms, in accordance with
the cosmic censorship. However, since the collapse proceeds to form toroidal,
cylindrical or planar black holes, the hoop conjecture in an anti-de Sitter
spacetime is violated.Comment: 4 pages, Revtex Journal: to appear in Physical Review
Two-Dimensional Black Holes and Planar General Relativity
The Einstein-Hilbert action with a cosmological term is used to derive a new
action in 1+1 spacetime dimensions. It is shown that the two-dimensional theory
is equivalent to planar symmetry in General Relativity. The two-dimensional
theory admits black holes and free dilatons, and has a structure similar to
two-dimensional string theories. Since by construction these solutions also
solve Einstein's equations, such a theory can bring two-dimensional results
into the four-dimensional real world. In particular the two-dimensional black
hole is also a black hole in General Relativity.Comment: 11 pages, plainte
Exact General Relativistic Disks with Magnetic Fields
The well-known ``displace, cut, and reflect'' method used to generate cold
disks from given solutions of Einstein equations is extended to solutions of
Einstein-Maxwell equations. Four exact solutions of the these last equations
are used to construct models of hot disks with surface density, azimuthal
pressure, and azimuthal current. The solutions are closely related to Kerr,
Taub-NUT, Lynden-Bell-Pinault and to a one-soliton solution. We find that the
presence of the magnetic field can change in a nontrivial way the different
properties of the disks. In particular, the pure general relativistic
instability studied by Bicak, Lynden-Bell and Katz [Phys. Rev. D47, 4334, 1993]
can be enhanced or cured by different distributions of currents inside the
disk. These currents, outside the disk, generate a variety of axial symmetric
magnetic fields. As far as we know these are the first models of hot disks
studied in the context of general relativity.Comment: 21 pages, 11 figures, uses package graphics, accepted in PR
Membrane paradigm and entropy of black holes in the Euclidean action approach
The membrane paradigm approach to black holes fixes in the vicinity of the
event horizon a fictitious surface, the stretched horizon, so that the
spacetime outside remains unchanged and the spacetime inside is vacuum. Using
this powerful method, several black hole properties have been found and
settled, such as the horizon's viscosity, electrical conductivity, resistivity,
as well as other properties. On the other hand the Euclidean action approach to
black hole spacetimes has been very fruitful in understanding black hole
entropy. Combining both the Euclidean action and membrane paradigm approaches a
direct derivation of the black hole entropy is given. In the derivation it is
considered that the only fields present are the gravitational and matter
fields, with no electric field.Comment: 13 page
The Three-Dimensional BTZ Black Hole as a Cylindrical System in Four-Dimensional General Relativity
It is shown how to transform the three dimensional BTZ black hole into a four
dimensional cylindrical black hole (i.e., black string) in general relativity.
This process is identical to the transformation of a point particle in three
dimensions into a straight cosmic string in four dimensions.Comment: Latex, 9 page
Gravitational collapse to toroidal, cylindrical and planar black holes
Gravitational collapse of non-spherical symmetric matter leads inevitably to
non-static external spacetimes. It is shown here that gravitational collapse of
matter with toroidal topology in a toroidal anti-de Sitter background proceeds
to form a toroidal black hole. According to the analytical model presented, the
collapsing matter absorbs energy in the form of radiation (be it scalar,
neutrinos, electromagnetic, or gravitational) from the exterior spacetime. Upon
decompactification of one or two coordinates of the torus one gets collapsing
solutions of cylindrical or planar matter onto black strings or black
membranes, respectively. The results have implications on the hoop conjecture.Comment: 6 pages, Revtex, modifications in the title and in the interpretation
of some results, to appear in Physical Review
Rotating Relativistic Thin Disks
Two families of models of rotating relativistic disks based on Taub-NUT and
Kerr metrics are constructed using the well-known "displace, cut and reflect"
method. We find that for disks built from a generic stationary axially
symmetric metric the "sound velocity", , is equal to
the geometric mean of the prograde and retrograde geodesic circular velocities
of test particles moving on the disk. We also found that for generic disks we
can have zones with heat flow. For the two families of models studied the
boundaries that separate the zones with and without heat flow are not stable
against radial perturbations (ring formation).Comment: 18 eps figures, to be published PR
Thermodynamics of the two-dimensional black hole in the Teitelboim-Jackiw theory
The two-dimensional theory of Teitelboim and Jackiw has constant and negative
curvature. In spite of this, the theory admits a black hole solution with no
singularities. In this work we study the thermodynamics of this black hole
using York's formalism.Comment: 16 pages, Late
Relativistic Static Thin Disks: The Counter-Rotating Model
A detailed study of the Counter-Rotating Model (CRM) for generic finite
static axially symmetric thin disks with nonzero radial pressure is presented.
We find a general constraint over the counter-rotating tangential velocities
needed to cast the surface energy-momentum tensor of the disk as the
superposition of two counter-rotating perfect fluids. We also found expressions
for the energy density and pressure of the counter-rotating fluids. Then we
shown that, in general, there is not possible to take the two counter-rotating
fluids as circulating along geodesics neither take the two counter-rotating
tangential velocities as equal and opposite. An specific example is studied
where we obtain some CRM with well defined counter-rotating tangential
velocities and stable against radial perturbations. The CRM obtained are in
agree with the strong energy condition, but there are regions of the disks with
negative energy density, in violation of the weak energy condition.Comment: 19 pages, 6 figures. Submitted to Physical Review
The Two-Dimensional Analogue of General Relativity
General Relativity in three or more dimensions can be obtained by taking the
limit in the Brans-Dicke theory. In two dimensions
General Relativity is an unacceptable theory. We show that the two-dimensional
closest analogue of General Relativity is a theory that also arises in the
limit of the two-dimensional Brans-Dicke theory.Comment: 8 pages, LaTeX, preprint DF/IST-17.9
- …
