7,517 research outputs found

    False vacuum decay: effective one-loop action for pair creation of domain walls

    Get PDF
    An effective one-loop action built from the soliton field itself for the two-dimensional (2D) problem of soliton pair creation is proposed. The action consists of the usual mass term and a kinetic term in which the simple derivative of the soliton field is replaced by a covariant derivative. In this effective action the soliton charge is treated no longer as a topological charge but as a Noether charge. Using this effective one-loop action, the soliton-antisoliton pair production rate is calculated and one recovers Stone's exponential factor and the prefactor of Kiselev, Selivanov and Voloshin. The results are also valid straightforwardly to the problem of pair creation rate of domain walls in dimensions greater than 2.Comment: 12 pages, Late

    Thermodynamics of toroidal black holes

    Full text link
    The thermodynamical properties of toroidal black holes in the grand canonical ensemble are investigated using York's formalism. The black hole is enclosed in a cavity with finite radius where the temperature and electrostatic potential are fixed. The boundary conditions allow one to compute the relevant thermodynamical quantities, e.g. thermal energy, entropy and specific heat. This black hole is thermodynamically stable and dominates the grand partition function. This means that there is no phase transition, as the one encountered for spherical black holes.Comment: 11 pages, 2 eps figures, revte

    The Two-Dimensional Analogue of General Relativity

    Full text link
    General Relativity in three or more dimensions can be obtained by taking the limit ω\omega\rightarrow\infty in the Brans-Dicke theory. In two dimensions General Relativity is an unacceptable theory. We show that the two-dimensional closest analogue of General Relativity is a theory that also arises in the limit ω\omega\rightarrow\infty of the two-dimensional Brans-Dicke theory.Comment: 8 pages, LaTeX, preprint DF/IST-17.9

    Two-Dimensional Black Holes and Planar General Relativity

    Get PDF
    The Einstein-Hilbert action with a cosmological term is used to derive a new action in 1+1 spacetime dimensions. It is shown that the two-dimensional theory is equivalent to planar symmetry in General Relativity. The two-dimensional theory admits black holes and free dilatons, and has a structure similar to two-dimensional string theories. Since by construction these solutions also solve Einstein's equations, such a theory can bring two-dimensional results into the four-dimensional real world. In particular the two-dimensional black hole is also a black hole in General Relativity.Comment: 11 pages, plainte

    Sub-femtosecond electron bunches created by direct laser acceleration in a laser wakefield accelerator with ionization injection

    Full text link
    In this work, we will show through three-dimensional particle-in-cell simulations that direct laser acceleration in laser a wakefield accelerator can generate sub-femtosecond electron bunches. Two simulations were done with two laser pulse durations, such that the shortest laser pulse occupies only a fraction of the first bubble, whereas the longer pulse fills the entire first bubble. In the latter case, as the trapped electrons moved forward and interacted with the high intensity region of the laser pulse, micro-bunching occurred naturally, producing 0.5 fs electron bunches. This is not observed in the short pulse simulation.Comment: AAC 201

    Does a relativistic metric generalization of Newtonian gravity exist in 2+1 dimensions?

    Get PDF
    It is shown that, contrary to previous claims, a scalar tensor theory of Brans-Dicke type provides a relativistic generalization of Newtonian gravity in 2+1 dimensions. The theory is metric and test particles follow the space-time geodesics. The static isotropic solution is studied in vacuum and in regions filled with an incompressible perfect fluid. It is shown that the solutions can be consistently matched at the matter vacuum interface, and that the Newtonian behavior is recovered in the weak field regime.Comment: 6 pages, no figures, Revtex4. Some discussions on the physical nature of the interior solution and on the omega->infinity limit and some references added. Version to appear in Phys. Rev.

    Exact General Relativistic Perfect Fluid Disks with Halos

    Get PDF
    Using the well-known ``displace, cut and reflect'' method used to generate disks from given solutions of Einstein field equations, we construct static disks made of perfect fluid based on vacuum Schwarzschild's solution in isotropic coordinates. The same method is applied to different exactsolutions to the Einstein'sequations that represent static spheres of perfect fluids. We construct several models of disks with axially symmetric perfect fluid halos. All disks have some common features: surface energy density and pressures decrease monotonically and rapidly with radius. As the ``cut'' parameter aa decreases, the disks become more relativistic, with surface energy density and pressure more concentrated near the center. Also regions of unstable circular orbits are more likely to appear for high relativistic disks. Parameters can be chosen so that the sound velocity in the fluid and the tangential velocity of test particles in circular motion are less then the velocity of light. This tangential velocity first increases with radius and reaches a maximum.Comment: 22 pages, 25 eps.figs, RevTex. Phys. Rev. D to appea

    BLACK HOLES IN THREE-DIMENSIONAL DILATON GRAVITY THEORIES

    Get PDF
    Three dimensional black holes in a generalized dilaton gravity action theory are analysed. The theory is specified by two fields, the dilaton and the graviton, and two parameters, the cosmological constant and the Brans-Dicke parameter. It contains seven different cases, of which one distinguishes as special cases, string theory, general relativity and a theory equivalent to four dimensional general relativity with one Killing vector. We study the causal structure and geodesic motion of null and timelike particles in the black hole geometries and find the ADM masses of the different solutions.Comment: 19 pages, latex, 4 figures as uuencoded postscript file

    The Three-Dimensional BTZ Black Hole as a Cylindrical System in Four-Dimensional General Relativity

    Full text link
    It is shown how to transform the three dimensional BTZ black hole into a four dimensional cylindrical black hole (i.e., black string) in general relativity. This process is identical to the transformation of a point particle in three dimensions into a straight cosmic string in four dimensions.Comment: Latex, 9 page
    corecore