328 research outputs found
A Survey for Infall Motions toward Starless Cores. II. and Mapping Observations
We present the results of an extensive mapping survey of 53 `starless' cores
in the optically thick line of CS 2-1 and the optically thin lines of N2H+ 1-0
and C18O 1-0. The purpose of this survey was to search for signatures of
extended inward motions.
This study finds 10 `strong' and 9 `probable' infall candidates, based on
analysis and on the spectral shapes of CS lines.
From our analysis of the blue-skewed CS spectra and the
parameter, we find typical infall radii of 0.06-0.14 pc. Also, using a simple
two layer radiative transfer model to fit the profiles, we derive
one-dimensional infall speeds, half of whose values lie in the range of
0.05-0.09 km s. These values are similar to those found in L1544 by
Tafalla et al., and this result confirms that infall speeds in starless cores
are generally faster than expected from ambipolar diffusion in a strongly
sub-critical core. In addition, the observed infall regions are too extended to
be consistent with the `inside-out' collapse model applied to a very low-mass
star. In the largest cores, the spatial extent of the CS spectra with infall
asymmetry is larger than the extent of the core by a factor of
2-3. All these results suggest that extended inward motions are a common
feature in starless cores, and that they could represent a necessary stage in
the condensation of a star-forming dense core.Comment: Two tex files for manuscript and tables, and 38 figures. To appear in
ApJ
Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes
Monolayer graphene exhibits exceptional electronic and mechanical properties,
making it a very promising material for nanoelectromechanical (NEMS) devices.
Here, we conclusively demonstrate the piezoresistive effect in graphene in a
nano-electromechanical membrane configuration that provides direct electrical
readout of pressure to strain transduction. This makes it highly relevant for
an important class of nano-electromechanical system (NEMS) transducers. This
demonstration is consistent with our simulations and previously reported gauge
factors and simulation values. The membrane in our experiment acts as a strain
gauge independent of crystallographic orientation and allows for aggressive
size scalability. When compared with conventional pressure sensors, the sensors
have orders of magnitude higher sensitivity per unit area.Comment: 20 pages, 3 figure
Edge-functionalized and substitutional doped graphene nanoribbons: electronic and spin properties
Graphene nanoribbons are the counterpart of carbon nanotubes in
graphene-based nanoelectronics. We investigate the electronic properties of
chemically modified ribbons by means of density functional theory. We observe
that chemical modifications of zigzag ribbons can break the spin degeneracy.
This promotes the onset of a semiconducting-metal transition, or of an
half-semiconducting state, with the two spin channels having a different
bandgap, or of a spin-polarized half-semiconducting state -where the spins in
the valence and conduction bands are oppositely polarized. Edge
functionalization of armchair ribbons gives electronic states a few eV away
from the Fermi level, and does not significantly affect their bandgap. N and B
produce different effects, depending on the position of the substitutional
site. In particular, edge substitutions at low density do not significantly
alter the bandgap, while bulk substitution promotes the onset of
semiconducting-metal transitions. Pyridine-like defects induce a
semiconducting-metal transition.Comment: 12 pages, 5 figure
Large Scale Integration of Graphene Transistors for Potential Applications in the Back End of the Line
A chip to wafer scale, CMOS compatible method of graphene device fabrication
has been established, which can be integrated into the back end of the line
(BEOL) of conventional semiconductor process flows. In this paper, we present
experimental results of graphene field effect transistors (GFETs) which were
fabricated using this wafer scalable method. The carrier mobilities in these
transistors reach up to several hundred cmVs. Further, these
devices exhibit current saturation regions similar to graphene devices
fabricated using mechanical exfoliation. The overall performance of the GFETs
can not yet compete with record values reported for devices based on
mechanically exfoliated material. Nevertheless, this large scale approach is an
important step towards reliability and variability studies as well as
optimization of device aspects such as electrical contacts and dielectric
interfaces with statistically relevant numbers of devices. It is also an
important milestone towards introducing graphene into wafer scale process
lines
Non-volatile switching in graphene field effect devices
The absence of a band gap in graphene restricts its straight forward
application as a channel material in field effect transistors. In this letter,
we report on a new approach to engineer a band gap in graphene field effect
devices (FED) by controlled structural modification of the graphene channel
itself. The conductance in the FEDs is switched between a conductive "on-state"
to an insulating "off-state" with more than six orders of magnitude difference
in conductance. Above a critical value of an electric field applied to the FED
gate under certain environmental conditions, a chemical modification takes
place to form insulating graphene derivatives. The effect can be reversed by
electrical fields of opposite polarity or short current pulses to recover the
initial state. These reversible switches could potentially be applied to
non-volatile memories and novel neuromorphic processing concepts.Comment: 14 pages, 4 figures, submitted to IEEE ED
DFT study of graphene doping due to metal contacts
The experimental results of Metal\u2013graphene (M\u2013G) contact resistance (RC) have been investigated in\u2013depth by means of Density Functional Theory (DFT). The simulations allowed us to build a consistent picture explaining the RC dependence on the metal contact materials employed in this work and on the applied back\u2013gate voltage. In this respect, the M\u2013G distance is paramount in determining the RC behavior
Dense Cores in Dark Clouds. XIV. N2H+(1-0) maps of dense cloud cores
We present results of an extensive mapping survey of N2H+(1-0) in about 60
low mass cloud cores already mapped in the NH3(1,1) inversion transition line.
The survey has been carried out at the FCRAO antenna with an angular resolution
about 1.5 times finer than the previous ammonia observations. Cores with stars
typically have map sizes about a factor of two smaller for N2H+ than for NH3,
indicating the presence of denser and more centrally concentrated gas compared
to starless cores. Significant correlations are found between NH3 and N2H+
column densities and excitation temperatures in starless cores, but not in
cores with stars, suggesting a different chemical evolution of the two species.
Velocity gradients range between 0.5 and 6 km/s/pc, similar to what has been
found with NH3 data. ``Local'' velocity gradients show significant variation in
both magnitude and direction, suggesting the presence of complexmotions not
interpretable as simple solid body rotation. Integrated intensity profiles of
starless cores present a ``central flattening'' and are consistent with a
spherically symmetric density law n ~ r^{-1.2} for r < ~0.03 pc and n ~ r^{-2}
at larger r. Cores with stars are better modelled with single density power
laws with n ~ r^{-2}. Line widths change across the core but we did not find a
general trend. The deviation in line width correlates with the mean line width,
suggesting that the line of sight contains ~ 10 coherence lengths. The
corresponding value of the coherence length, ~ 0.01 pc, is similar to the
expected cutoff wavelength for MHD waves. This similarity may account for the
increased ``coherence'' of line widths on small scales. Despite of the finer
angular resolution, the majority of N2H+ and NH3 maps show a similar ``simple''
structure, with single peaks and no elongation.Comment: 62 pages, 11 figures, ApJ, in pres
A Spherical Model for "Starless" Cores of Magnetic Molecular Clouds and Dynamical Effects of Dust Grains
In the standard picture of isolated star formation, dense ``starless'' cores
are formed out of magnetic molecular clouds due to ambipolar diffusion. Under
the simplest spherical geometry, I demonstrate that ``starless'' cores formed
this way naturally exhibit a large scale inward motion, whose size and speed
are comparable to those detected recently by Taffala et al. and Williams et al.
in ``starless'' core L1544. My model clouds have a relatively low mass (of
order 10 ) and low field strength (of order 10 G) to begin with.
They evolve into a density profile with a central plateau surrounded by a
power-law envelope, as found previously. The density in the envelope decreases
with radius more steeply than those found by Mouschovias and collaborators for
the more strongly magnetized, disk-like clouds.
At high enough densities, dust grains become dynamically important by greatly
enhancing the coupling between magnetic field and the neutral cloud matter. The
trapping of magnetic flux associated with the enhanced coupling leads, in the
spherical geometry, to a rapid assemblage of mass by the central protostar,
which exacerbates the so-called ``luminosity problem'' in star formation.Comment: 27 pages, 4 figures, accepted by Ap
- …