560 research outputs found
Variance Reduction Result for a Projected Adaptive Biasing Force Method
This paper is committed to investigate an extension of the classical adaptive
biasing force method, which is used to compute the free energy related to the
Boltzmann-Gibbs measure and a reaction coordinate function. The issue of this
technique is that the approximated gradient of the free energy, called biasing
force, is not a gradient. The commitment to this field is to project the
estimated biasing force on a gradient using the Helmholtz decomposition. The
variance of the biasing force is reduced using this technique, which makes the
algorithm more efficient than the standard ABF method. We prove exponential
convergence to equilibrium of the estimated free energy, with a precise rate of
convergence in function of Logarithmic Sobolev inequality constants
A multiple replica approach to simulate reactive trajectories
A method to generate reactive trajectories, namely equilibrium trajectories
leaving a metastable state and ending in another one is proposed. The algorithm
is based on simulating in parallel many copies of the system, and selecting the
replicas which have reached the highest values along a chosen one-dimensional
reaction coordinate. This reaction coordinate does not need to precisely
describe all the metastabilities of the system for the method to give reliable
results. An extension of the algorithm to compute transition times from one
metastable state to another one is also presented. We demonstrate the interest
of the method on two simple cases: a one-dimensional two-well potential and a
two-dimensional potential exhibiting two channels to pass from one metastable
state to another one
Dissolution and gettering of iron during contact co-firing
The dissolution and gettering of iron is studied during the final fabrication step of multicrystalline silicon solar cells, the co-firing step, through simulations and experiments. The post-processed interstitial iron concentration is simulated according to the as-grown concentration and distribution of iron within a silicon wafer, both in the presence and absence of the phosphorus emitter, and applying different time-temperature profiles for the firing step. The competing effects of dissolution and gettering during the short annealing process are found to be strongly dependant on the as-grown material quality. Furthermore, increasing the temperature of the firing process leads to a higher dissolution of iron, hardly compensated by the higher diffusivity of impurities. A new defect engineering tool is introduced, the extended co-firing, which could allow an enhanced gettering effect within a small additional tim
Extended skyrmion lattice scattering and long-time memory in the chiral magnet FeCoSi
Small angle neutron scattering measurements on a bulk single crystal of the
doped chiral magnet FeCoSi with =0.3 reveal a pronounced effect
of the magnetic history and cooling rates on the magnetic phase diagram. The
extracted phase diagrams are qualitatively different for zero and field cooling
and reveal a metastable skyrmion lattice phase outside the A-phase for the
latter case. These thermodynamically metastable skyrmion lattice correlations
coexist with the conical phase and can be enhanced by increasing the cooling
rate. They appear in a wide region of the phase diagram at temperatures below
the -phase but also at fields considerably smaller or higher than the fields
required to stabilize the A-phase
Universality of the helimagnetic transition in cubic chiral magnets: Small angle neutron scattering and neutron spin echo spectroscopy studies of FeCoSi
We present a comprehensive Small Angle Neutron Scattering (SANS) and Neutron
Spin Echo Spectroscopy (NSE) study of the structural and dynamical aspects of
the helimagnetic transition in FeCoSi with = 0.30. In contrast
to the sharp transition observed in the archetype chiral magnet MnSi, the
transition in FeCoSi is gradual and long-range helimagnetic
ordering coexists with short-range correlations over a wide temperature range.
The dynamics are more complex than in MnSi and involve long relaxation times
with a stretched exponential relaxation which persists even under magnetic
field. These results in conjunction with an analysis of the hierarchy of the
relevant length scales show that the helimagnetic transition in
FeCoSi differs substantially from the transition in MnSi and
question the validity of a universal approach to the helimagnetic transition in
chiral magnets
Développement et validation d’une méthode de dosage des traces de détergents inactivants totaux du prion
OBJECTIVES: In this study, a novel analytical method to quantify prion inactivating detergent in rinsing waters coming from the washer-disinfector of a hospital sterilization unit has been developed. The final aim was to obtain an easy and functional method in a routine hospital process which does not need the cleaning product manufacturer services.
METHODS: An ICP-MS method based on the potassium dosage of the washer-disinfector\u27s rinsing waters was developed. Potassium hydroxide is present on the composition of the three prion inactivating detergent currently on the French market. The detergent used in this study was the Actanios LDI(®) (Anios laboratories). A Passing and Bablok regression compares concentrations measured with this developed method and with the HPLC-UV manufacturer method.
RESULTS: According to results obtained, the developed method is easy to use in a routine hospital process. The Passing and Bablok regression showed that there is no statistical difference between the two analytical methods during the second rinsing step. Besides, both methods were linear on the third rinsing step, with a 1.5ppm difference between the concentrations measured for each method.
CONCLUSIONS: This study shows that the ICP-MS method developed is nonspecific for the detergent, but specific for the potassium element which is present in all prion inactivating detergent currently on the French market. This method should be functional for all the prion inactivating detergent containing potassium, if the sensibility of the method is sufficient when the potassium concentration is very low in the prion inactivating detergent formulation
Optical properties of Au colloids self-organized into rings via copolymer templates
The investigation of the Localized Surface Plasmon Resonance for plasmonic
nanoparticles has opened new perspectives for optical nanosensors. Today, an
issue in plasmonics is the development of large scale and low cost devices. We
focus here on the Langmuir-Blodgett technique to self-organize gold
nanoparticles (~ 7 nm) into rings (~ 60 nm) via
polystyrene-b-polymethylmethacrylate templates. In particular, we investigated
the optical properties of organized gold nanoparticle rings over large areas
and report experimental evidence for plasmon resonances of both individual
nanoparticles and collective modes. This paves the way for designing devices
with multiple resonances in the visible-Infra-red spectrum and developing
optical sensors
Effective dynamics using conditional expectations
The question of coarse-graining is ubiquitous in molecular dynamics. In this
article, we are interested in deriving effective properties for the dynamics of
a coarse-grained variable , where describes the configuration of
the system in a high-dimensional space , and is a smooth function
with value in (typically a reaction coordinate). It is well known that,
given a Boltzmann-Gibbs distribution on , the equilibrium
properties on are completely determined by the free energy. On the
other hand, the question of the effective dynamics on is much more
difficult to address. Starting from an overdamped Langevin equation on , we propose an effective dynamics for using conditional
expectations. Using entropy methods, we give sufficient conditions for the time
marginals of the effective dynamics to be close to the original ones. We check
numerically on some toy examples that these sufficient conditions yield an
effective dynamics which accurately reproduces the residence times in the
potential energy wells. We also discuss the accuracy of the effective dynamics
in a pathwise sense, and the relevance of the free energy to build a
coarse-grained dynamics
Elucidation of the metabolites of the novel psychoactive substance 4-methyl-N-ethyl-cathinone (4-MEC) in human urine and pooled liver microsomes by GC-MS & LC-HR-MS/MS techniques and of its detectability by GC-MS or LC-MS(n) standard screening approaches
4-methyl-N-ethcathinone (4-MEC), the N-ethyl homologue of mephedrone, is a novel psychoactive substance of the beta-keto amphetamine (cathinone) group. The aim of the present work was to study the phase I and phase II metabolism of 4-MEC in human urine as well as in pooled human liver microsome (pHLM) incubations. The urine samples were worked up with and without enzymatic cleavage, the pHLM incubations by simple deproteinization. The metabolites were separated and identified by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-high resolution-tandem mass spectrometry (LC-HR-MS/MS). Based on the metabolites identified in urine and/or pHLM, the following metabolic pathways could be proposed: reduction of the keto group, N-deethylation, hydroxylation of the 4-methyl group followed by further oxidation to the corresponding 4-carboxy metabolite, and combinations of these steps. Glucuronidation could only be observed for the hydroxy metabolite. These pathways were similar to those described for the N-methyl homologue mephedrone and other related drugs. In pHLM, all phase I metabolites with the exception of the N-deethyl-dihydro isomers and the 4-carboxy-dihydro metabolite could be confirmed. Glucuronides could not be formed under the applied conditions. Although the taken dose was not clear, an intake of 4-MEC should be detectable in urine by the GC-MS and LC-MS(n) standard urine screening approaches at least after overdose
- …