715 research outputs found
Description of Drip-Line Nuclei within Relativistic Mean-Field Plus BCS Approach
Recently it has been demonstrated, considering Ni and Ca isotopes as
prototypes, that the relativistic mean-field plus BCS (RMF+BCS) approach
wherein the single particle continuum corresponding to the RMF is replaced by a
set of discrete positive energy states for the calculation of pairing energy
provides a good approximation to the full relativistic Hartree-Bogoliubov (RHB)
description of the ground state properties of the drip-line neutron rich
nuclei. The applicability of RMF+BCS is essentially due to the fact that the
main contribution to the pairing correlations is provided by the low-lying
resonant states. General validity of this approach is demonstrated by the
detailed calculations for the ground state properties of the chains of isotopes
of O, Ca, Ni, Zr, Sn and Pb nuclei. The TMA and NL-SH force parameter sets have
been used for the effective mean-field Lagrangian. Comprehensive results for
the two neutron separation energy, rms radii, single particle pairing gaps and
pairing energies etc. are presented. The Ca isotopes are found to exhibit
distinct features near the neutron drip line whereby it is found that further
addition of neutrons causes a rapid increase in the neutron rms radius with
almost no increase in the binding energy, indicating the occurrence of halos. A
comparison of these results with the available experimental data and with the
recent continuum relativistic Hartree-Bogoliubov (RCHB) calculations amply
demonstrates the validity and usefulness of this fast RMF+BCS approach.Comment: 59 pages, 40 figure
PS16dtm: A Tidal Disruption Event in a Narrow-line Seyfert 1 Galaxy
[Abridged] We present observations of PS16dtm, a luminous transient that
occurred at the nucleus of a known Narrow-line Seyfert 1 galaxy hosting a
10 M black hole. The transient was previously claimed to be a Type
IIn SLSN due to its luminosity and hydrogen emission lines. The light curve
shows that PS16dtm brightened by about two magnitudes in ~50 days relative to
the archival host brightness and then exhibited a plateau phase for about 100
days followed by the onset of fading in the UV. During the plateau PS16dtm
showed no color evolution, maintained a blackbody temperature of 1.7 x 10
K, and radiated at approximately of the SMBH. The spectra exhibit
multi-component hydrogen emission lines and strong FeII emission, show little
evolution with time, and closely resemble the spectra of NLS1s while being
distinct from those of Type IIn SNe. Moreover, PS16dtm is undetected in the
X-rays to a limit an order of magnitude below an archival X-ray detection of
its host galaxy. These observations strongly link PS16dtm to activity
associated with the SMBH and are difficult to reconcile with a SN origin or any
known form of AGN variability, and therefore we argue that it is a TDE in which
the accretion of the stellar debris powers the rise in the continuum and
excitation of the pre-existing broad line region, while providing material that
obscures the X-ray emitting region of the pre-existing AGN accretion disk. A
detailed TDE model fit to the light curve indicates that PS16dtm will remain
bright for several years; we further predict that the X-ray emission will
reappear on a similar timescale as the accretion rate declines. Finally, we
place PS16dtm in the context of other TDEs and find that TDEs in AGN galaxies
are an order of magnitude more efficient and reach Eddington luminosities,
likely due to interaction of the stellar debris with the pre-existing accretion
disk.Comment: 19 pages, 17 figures, Submitted to Ap
ZFOURGE: Extreme 5007 emission may be a common early-lifetime phase for star-forming galaxies at
Using the \prospector\ spectral energy distribution (SED) fitting code, we
analyze the properties of 19 Extreme Emission Line Galaxies (EELGs) identified
in the bluest composite SED in the \zfourge\ survey at .
\prospector\ includes a physical model for nebular emission and returns
probability distributions for stellar mass, stellar metallicity, dust
attenuation, and nonparametric star formation history (SFH). The EELGs show
evidence for a starburst in the most recent 50 Myr, with the median EELG having
a specific star formation rate (sSFR) of 4.6 Gyr and forming 15\% of its
mass in this short time. For a sample of more typical star-forming galaxies
(SFGs) at the same redshifts, the median SFG has a sSFR of 1.1 Gyr and
forms only of its mass in the last 50 Myr. We find that virtually all of
our EELGs have rising SFHs, while most of our SFGs do not. From our analysis,
we hypothesize that many, if not most, star-forming galaxies at
undergo an extreme H+[\hbox{{\rm O}\kern 0.1em{\sc iii}}] emission
line phase early in their lifetimes. In a companion paper, we obtain
spectroscopic confirmation of the EELGs as part of our {\sc MOSEL} survey. In
the future, explorations of uncertainties in modeling the UV slope for galaxies
at are needed to better constrain their properties, e.g. stellar
metallicities.Comment: 11 pages, 5 figures (main figure is fig 5), accepted for publication
in Ap
The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale
We present the properties of NGC 4993, the host galaxy of GW170817, the first
gravitational wave (GW) event from the merger of a binary neutron star (BNS)
system and the first with an electromagnetic (EM) counterpart. We use both
archival photometry and new optical/near-IR imaging and spectroscopy, together
with stellar population synthesis models to infer the global properties of the
host galaxy. We infer a star formation history peaked at Gyr ago,
with subsequent exponential decline leading to a low current star formation
rate of 0.01 M yr, which we convert into a binary merger
timescale probability distribution. We find a median merger timescale of
Gyr, with a 90% confidence range of Gyr. This
in turn indicates an initial binary separation of R,
comparable to the inferred values for Galactic BNS systems. We also use new and
archival images to measure a projected offset of
the optical counterpart of kpc (0.64) from the center of NGC 4993
and to place a limit of mag on any pre-existing emission,
which rules out the brighter half of the globular cluster luminosity function.
Finally, the age and offset of the system indicates it experienced a modest
natal kick with an upper limit of km s. Future GWEM
observations of BNS mergers will enable measurement of their population delay
time distribution, which will directly inform their viability as the dominant
source of -process enrichment in the Universe.Comment: 9 Pages, 3 Figures, 2 Tables, ApJL, In Press. Keywords: GW170817, LV
Comparison of some Reduced Representation Approximations
In the field of numerical approximation, specialists considering highly
complex problems have recently proposed various ways to simplify their
underlying problems. In this field, depending on the problem they were tackling
and the community that are at work, different approaches have been developed
with some success and have even gained some maturity, the applications can now
be applied to information analysis or for numerical simulation of PDE's. At
this point, a crossed analysis and effort for understanding the similarities
and the differences between these approaches that found their starting points
in different backgrounds is of interest. It is the purpose of this paper to
contribute to this effort by comparing some constructive reduced
representations of complex functions. We present here in full details the
Adaptive Cross Approximation (ACA) and the Empirical Interpolation Method (EIM)
together with other approaches that enter in the same category
Asymmetric nuclear matter:the role of the isovector scalar channel
We try to single out some qualitative new effects of the coupling to the
-isovector-scalar meson introduced in a minimal way in a
phenomenological hadronic field theory. Results for the equation of state
() and the phase diagram of asymmetric nuclear matter () are
discussed. We stress the consistency of the -coupling introduction in a
relativistic approach. New contributions to the slope and curvature of the
symmetry energy and the neutron-proton effective mass splitting appear
particularly interesting. A more repulsive for neutron matter at high
baryon densities is expected. Effects on new critical properties of warm ,
mixing of mechanical and chemical instabilities and isospin distillation, are
also presented. The influence is mostly on the {\it isovectorlike}
collective response.
The results are largely analytical and this makes the physical meaning quite
transparent. Implications for nuclear structure properties of drip-line nuclei
and for reaction dynamics with Radioactive Beams are finally pointed out.Comment: 12 pages, 10 Postscript figure
Galaxy formation in the Planck cosmology - I. Matching the observed evolution of star formation rates, colours and stellar masses
We have updated the Munich galaxy formation model to the Planck first-year cosmology, while modifying the treatment of baryonic processes to reproduce recent data on the abundance and passive fractions of galaxies from z = 3 down to z = 0. Matching these more extensive and more precise observational results requires us to delay the reincorporation of wind ejecta, to lower the surface density threshold for turning cold gas into stars, to eliminate ram-pressure stripping in haloes less massive than ∼1014 M⊙, and to modify our model for radio mode feedback. These changes cure the most obvious failings of our previous models, namely the overly early formation of low-mass galaxies and the overly large fraction of them that are passive at late times. The new model is calibrated to reproduce the observed evolution both of the stellar mass function and of the distribution of star formation rate at each stellar mass. Massive galaxies (log M⋆/M⊙ ≥ 11.0) assemble most of their mass before z = 1 and are predominantly old and passive at z = 0, while lower mass galaxies assemble later and, for log M⋆/M⊙ ≤ 9.5, are still predominantly blue and star forming at z = 0. This phenomenological but physically based model allows the observations to be interpreted in terms of the efficiency of the various processes that control the formation and evolution of galaxies as a function of their stellar mass, gas content, environment and time
Signaling via PI3K/FOXO1A pathway modulates formation and survival of human embryonic stem cell-derived endothelial cells
Vascular derivatives of human embryonic stem cells (hESC) are being developed as sources of tissue-specific cells for organ regeneration. However, identity of developmental pathways that modulate the specification of endothelial cells is not known yet. We studied phosphatidylinositol 3-kinase (PI3K)-Forkhead box O transcription factor 1A (FOXO1A) pathways during differentiation of hESC toward endothelial lineage and on proliferation, maturation, and cell death of hESC-derived endothelial cells (hESC-EC). During differentiation of hESC, expression of FOXO1A transcription factor was linked to the expression of a cluster of angiogenesis- and vascular remodeling-related genes. PI3K inhibitor LY294002 activated FOXO1A and induced formation of CD31(+) hESC-EC. In contrast, differentiating hESC with silenced FOXO1A by small interfering RNA (siRNA) showed lower mRNA levels of CD31 and angiopoietin2. LY294002 decreased proliferative activity of purified hESC-EC, while FOXO1A siRNA increased their proliferation. LY294002 inhibits migration and tube formation of hESC-EC; in contrast, FOXO1A siRNA increased in vitro tube formation activity of hESC-EC. After in vivo conditioning of cells in athymic nude rats, cells retain their low FOXO1A expression levels. PI3K/FOXO1A pathway is important for function and survival of hESC-EC and in the regulation of endothelial cell fate. Understanding these properties of hESC-EC may help in future applications for treatment of injured organs
Novel methodology for predicting the critical salt concentration of bubble coalescence inhibition
Bubble coalescence in some salt solutions can be inhibited if the salt concentration reaches a critical concentration Ccr. There are three models available for Ccr in the literature, but they fail to predict Ccr correctly. The first two models employ the van der Waals attraction power laws to establish Ccr from the discriminant of quadratic or cubic polynomials. To improve the two models, the third model uses the same momentum balance equation of the previous models but different intermolecular force generated by water hydration with exponential decaying. The third prediction for Ccr requires the experimental input for film rupture thickness and is incomplete. We show further in this paper that the third model is incorrect. We propose a novel methodology for determining C cr which resolves the mathematical uncertainties in modeling C cr and can explicitly predict it from any relevant intermolecular forces. The methodology is based on the discovery that Ccr occurs at the local maximum of the balance equation for the capillary pressure, disjoining pressure, and pressure of the Gibbs-Marangoni stress. The novel generic approach is successfully validated using nonlinear equations for complicated disjoining pressure
- …
