25 research outputs found

    Defensins from insects and plants interact with fungal glucosylceramides

    No full text
    Growth of the yeast species Candida albicans and Pichia pastoris is inhibited by RsAFP2, a plant defensin isolated from radish seed (Raphanus sativus), at micromolar concentrations. In contrast, gcs-deletion mutants of both yeast species are resistant toward RsAFP2. GCS genes encode UDP-glucose:ceramide glucosyltransferases, which catalyze the final step in the biosynthesis of the membrane lipid glucosylceramide. In an enzyme-linked immunosorbent assay-based binding assay, RsAFP2 was found to interact with glucosylceramides isolated from P. pastoris but not with soybean nor human glucosylceramides. Furthermore, the P. pastoris parental strain is sensitive toward RsAFP2-induced membrane permeabilization, whereas the corresponding gcs-deletion mutant is highly resistant to RsAFP2-mediated membrane permeabilization. A model for the mode of action of RsAFP2 is presented in which all of these findings are linked. Similarly to RsAFP2, heliomicin, a defensin-like peptide from the insect Heliothis virescens, is active on C. albicans and P. pastoris parental strains but displays no activity on the gcs-deletion mutants of both yeast species. Furthermore, heliomicin interacts with glucosylceramides isolated from P. pastoris and soybean but not with human glucosylceramides. These data indicate that structurally homologous anti-fungal peptides present in species from different eukaryotic kingdoms interact with the same target in the fungal plasma membrane, namely glucosylceramides, and as such support the hypothesis that defensins from plants and insects have evolved from a single precursor

    Crystal structure of the guanylyl cyclase Cya2

    No full text
    Cyclic GMP (cGMP) is an important second messenger in eukaryotes. It is formed by guanylyl cyclases (GCs), members of the nucleotidyl cyclases class III, which also comprises adenylyl cyclases (ACs) from most organisms. To date, no structures of eukaryotic GCs are available, and all bacterial class III proteins were found to be ACs. Here we describe the biochemical and structural characterization of the class III cyclase Cya2 from cyanobacterium Synechocystis PCC6803. Cya2 shows high specificity for GTP versus ATP, revealing it to be the first bacterial GC, and sequence similarity searches indicate that GCs are also present in other bacteria. The crystal structure of Cya2 provides first structural insights into the universal GC family. Structure and mutagenesis studies show that a conserved glutamate, assisted by an interacting lysine, dominates substrate selection by forming hydrogen bonds to the substrate base. We find, however, that a second residue involved in substrate selection has an unexpected sterical role in GCs, different from its hydrogen bonding function in the related ACs. The structure identifies a tyrosine that lines the guanine binding pocket as additional residue contributing to substrate specificity. Furthermore, we find that substrate specificity stems from faster turnover of GTP, rather than different affinities for GTP and ATP, implying that the specificity-determining interactions are established after the binding step
    corecore