86,200 research outputs found
Hardness of Graph Pricing through Generalized Max-Dicut
The Graph Pricing problem is among the fundamental problems whose
approximability is not well-understood. While there is a simple combinatorial
1/4-approximation algorithm, the best hardness result remains at 1/2 assuming
the Unique Games Conjecture (UGC). We show that it is NP-hard to approximate
within a factor better than 1/4 under the UGC, so that the simple combinatorial
algorithm might be the best possible. We also prove that for any , there exists such that the integrality gap of
-rounds of the Sherali-Adams hierarchy of linear programming for
Graph Pricing is at most 1/2 + .
This work is based on the effort to view the Graph Pricing problem as a
Constraint Satisfaction Problem (CSP) simpler than the standard and complicated
formulation. We propose the problem called Generalized Max-Dicut(), which
has a domain size for every . Generalized Max-Dicut(1) is
well-known Max-Dicut. There is an approximation-preserving reduction from
Generalized Max-Dicut on directed acyclic graphs (DAGs) to Graph Pricing, and
both our results are achieved through this reduction. Besides its connection to
Graph Pricing, the hardness of Generalized Max-Dicut is interesting in its own
right since in most arity two CSPs studied in the literature, SDP-based
algorithms perform better than LP-based or combinatorial algorithms --- for
this arity two CSP, a simple combinatorial algorithm does the best.Comment: 28 page
Half Semimetallic Antiferromagnetism in the SrCrTO System, T=Os, Ru
Double perovskite SrCrOsO is (or is very close to) a realization of a
spin-asymmetric semimetallic compensated ferrimagnet, according to first
principles calculations. This type of near-half metallic antiferromagnet is an
unusual occurrence, and more so in this compound because the zero gap is
accidental rather than being symmetry determined. The large spin-orbit coupling
(SOC) of osmium upsets the spin balance (no net spin moment without SOC): it
reduces the Os spin moment by 0.27 and induces an Os orbital moment of
0.17 in the opposite direction. The effects combine (with small oxygen
contributions) to give a net total moment of 0.54 per cell in \scoo,
reflecting a large impact of SOC in this compound. This value is in moderately
good agreement with the measured saturation moment of 0.75 . The value
of the net moment on the Os ion obtained from neutron diffraction (0.73
at low temperature) differs from the calculated value (1.14 ). Rather
surprisingly, in isovalent SrCrRuO the smaller SOC-induced spin changes
and orbital moments (mostly on Ru) almost exactly cancel. This makes
SrCrRuO a "half (semi)metallic antiferromagnet" (practically vanishing
net total moment) even when SOC is included, with the metallic channel being a
small-band-overlap semimetal. Fixed spin moment (FSM) calculations are
presented for each compound, illustrating how they provide different
information than in the case of a nonmagnetic material. These FSM results
indicate that the Cr moment is an order of magnitude stiffer against
longitudinal fluctuations than is the Os moment.Comment: 6 page
Prediction of force coefficients for labyrinth seals
The development of a linear model for the prediction of labyrinth seal forces and on its comparison to available stiffness data is presented. A discussion of the relevance of fluid damping forces and the preliminary stages of a program to obtain data on these forces are examined. Fluid-dynamic forces arising from nonuniform pressure patterns in labyrinth seal glands are known to be potentially destablizing in high power turbomachinery. A well documented case in point is that of the space Shuttle Main Engine turbopumps. Seal forces are also an important factor for the stability of shrouded turbines, acting in that case in conjunction with the effects of blade-tip clearance variations
Observation of Scalar Aharonov-Bohm Effect with Longitudinally Polarized Neutrons
We have carried out a neutron interferometry experiment using longitudinally polarized neutrons to observe the scalar Aharonov-Bohm effect. The neutrons inside the interferometer are polarized parallel to an applied pulsed magnetic field B(t). The pulsed B field is spatially uniform so it exerts no force on the neutrons. Its direction also precludes the presence of any classical torque to change the neutron polarization
Scalar Aharonov-Bohm effect with longitudinally polarized neutrons
In the scalar Aharonov-Bohm effect, a charged particle (electron) interacts with the scalar electrostatic potential U in the field-free (i.e., force-free) region inside an electrostatic cylinder (Faraday cage). Using a perfect single-crystal neutron interferometer we have performed a “dual” scalar Aharonov-Bohm experiment by subjecting polarized thermal neutrons to a pulsed magnetic field. The pulsed magnetic field was spatially uniform, precluding any force on the neutrons. Aligning the direction of the pulsed magnetic field to the neutron magnetic moment also rules out any classical torque acting to change the neutron polarization. The observed phase shift is purely quantum mechanical in origin. A detailed description of the experiment, performed at the University of Missouri Research Reactor, and its interpretation is given in this paper
Reconstructing Three-dimensional Structure of Underlying Triaxial Dark Halos From Xray and Sunyaev-Zel'dovich Effect Observations of Galaxy Clusters
While the use of galaxy clusters as {\it tools} to probe cosmology is
established, their conventional description still relies on the spherical
and/or isothermal models that were proposed more than 20 years ago. We present,
instead, a deprojection method to extract their intrinsic properties from X-ray
and Sunyaev--Zel'dovich effect observations in order to improve our
understanding of cluster physics. First we develop a theoretical model for the
intra-cluster gas in hydrostatic equilibrium in a triaxial dark matter halo
with a constant axis ratio. In this theoretical model, the gas density profiles
are expressed in terms of the intrinsic properties of the dark matter halos.
Then, we incorporate the projection effect into the gas profiles, and show that
the gas surface brightness profiles are expressed in terms of the
eccentricities and the orientation angles of the dark halos. For the practical
purpose of our theoretical model, we provide several empirical fitting formulae
for the gas density and temperature profiles, and also for the surface
brightness profiles relevant to X-ray and Sunyaev--Zel'dovich effect
observations. Finally, we construct a numerical algorithm to determine the halo
eccentricities and orientation angles using our model, and demonstrate that it
is possible in principle to reconstruct the 3D structures of the dark halos
from the X-ray and/or Sunyaev-Zel'dovich effect cluster data alone without
requiring priors such as weak lensing informations and without relying on such
restrictive assumptions as the halo axial symmetry about the line-of-sight.Comment: Accepted version, new discussions added, typos and minor mistakes
corrected, ApJ in press (2004, Feb. 1 scheduled, Vol. 601, No. 2 issue),26
pages, 7 postscript figure
An Extremal Chiral Primary Three-Point Function at Two-loops in ABJ(M)
archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-23 slaccitation: %%CITATION = ARXIV:1411.0626;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-23 slaccitation: %%CITATION = ARXIV:1411.0626;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-23 slaccitation: %%CITATION = ARXIV:1411.0626;%
- …