6,474 research outputs found

    Thermodynamics and Phase Structure of the Two-Flavor Nambu--Jona-Lasinio Model Beyond Large-N_c

    Full text link
    The optimized perturbation theory (OPT) method is applied to the SU(2)SU(2) version of the Nambu--Jona-Lasinio (NJL) model both at zero and at finite temperature and/or density. At the first nontrivial order the OPT exhibits a class of 1/N_c corrections which produce nonperturbative results that go beyond the standard large-N_c, or mean-field approximation. The consistency of the OPT method with the Goldstone theorem at this order is established, and appropriate OPT values of the basic NJL (vacuum) parameters are obtained by matching the pion mass and decay constant consistently. Deviations from standard large-N_c relations induced by OPT at this order are derived, for example, for the Gell--Mann-Oakes-Renner relation. Next, the results for the critical quantities and the phase diagram of the model, as well as a number of other thermodynamical quantities of interest, are obtained with OPT and then contrasted with the corresponding results at large N_c.Comment: 29 pages, 20 figures, revtex. Minor corrections. In press Phys. Rev.

    StdpC: a modern dynamic clamp

    Get PDF
    With the advancement of computer technology many novel uses of dynamic clamp have become possible. We have added new features to our dynamic clamp software StdpC (“Spike timing-dependent plasticity Clamp”) allowing such new applications while conserving the ease of use and installation of the popular earlier Dynclamp 2/4 package. Here, we introduce the new features of a waveform generator, freely programmable Hodgkin–Huxley conductances, learning synapses, graphic data displays, and a powerful scripting mechanism and discuss examples of experiments using these features. In the first example we built and ‘voltage clamped’ a conductance based model cell from a passive resistor–capacitor (RC) circuit using the dynamic clamp software to generate the voltage-dependent currents. In the second example we coupled our new spike generator through a burst detection/burst generation mechanism in a phase-dependent way to a neuron in a central pattern generator and dissected the subtle interaction between neurons, which seems to implement an information transfer through intraburst spike patterns. In the third example, making use of the new plasticity mechanism for simulated synapses, we analyzed the effect of spike timing-dependent plasticity (STDP) on synchronization revealing considerable enhancement of the entrainment of a post-synaptic neuron by a periodic spike train. These examples illustrate that with modern dynamic clamp software like StdpC, the dynamic clamp has developed beyond the mere introduction of artificial synapses or ionic conductances into neurons to a universal research tool, which might well become a standard instrument of modern electrophysiology

    Critical and Tricritical Points for the Massless 2d Gross-Neveu Model Beyond Large N

    Get PDF
    Using optimized perturbation theory, we evaluate the effective potential for the massless two dimensional Gross-Neveu model at finite temperature and density containing corrections beyond the leading large-N contribution. For large-N, our results exactly reproduce the well known 1/N leading order results for the critical temperature, chemical potential and tricritical points. For finite N, our critical values are smaller than the ones predicted by the large-N approximation and seem to observe Landau's theorem for phase transitions in one space dimension. New analytical results are presented for the tricritical points that include 1/N corrections. The easiness with which the calculations and renormalization are carried out allied to the seemingly convergent optimized results displayed, in this particular application, show the robustness of this method and allows us to obtain neat analytical expressions for the critical as well as tricritical values beyond the results currently known.Comment: 29 pages, 14 figure

    Effective Potential and Thermodynamics for a Coupled Two-Field Bose Gas Model

    Full text link
    We study the thermodynamics of a two-species homogeneous and dilute Bose gas that is self-interacting and quadratically coupled to each other. We make use of field theoretical functional integral techniques and evaluate the one-loop finite temperature effective potential for this system considering the resummation of the leading order temperature dependent as well as infrared contributions. The symmetry breaking pattern associated to the model is then studied by considering different values of self and inter-species couplings. We pay special attention to the eventual appearance of reentrant phases and/or shifts in the observed critical temperatures as compared to the monoatomic (one-field Bose) case.Comment: 21 pages, 4 eps figure

    A new improved optimization of perturbation theory: applications to the oscillator energy levels and Bose-Einstein critical temperature

    Full text link
    Improving perturbation theory via a variational optimization has generally produced in higher orders an embarrassingly large set of solutions, most of them unphysical (complex). We introduce an extension of the optimized perturbation method which leads to a drastic reduction of the number of acceptable solutions. The properties of this new method are studied and it is then applied to the calculation of relevant quantities in different ϕ4\phi^4 models, such as the anharmonic oscillator energy levels and the critical Bose-Einstein Condensation temperature shift ΔTc\Delta T_c recently investigated by various authors. Our present estimates of ΔTc\Delta T_c, incorporating the most recently available six and seven loop perturbative information, are in excellent agreement with all the available lattice numerical simulations. This represents a very substantial improvement over previous treatments.Comment: 9 pages, no figures. v2: minor wording changes in title/abstract, to appear in Phys.Rev.

    Complete genome sequence of burkholderia gladioli myophage mana

    Get PDF
    Burkholderia gladioli is known to cause respiratory tract infections in cystic fibrosis patients. Here, we describe the annotation of the 38,038-bp genome sequence of Mana, a P2-like phage of B. gladioli. Understanding the genomic characteristics of phages infecting pathogens like B. gladioli can lead to advancements in phage therapy.Fil: Godoy, Brenda. Texas A&M University; Estados UnidosFil: Yao, Guichun. Texas A&M University; Estados UnidosFil: Le, Tram. Texas A&M University; Estados UnidosFil: Vizoso Pinto, MarĂ­a Guadalupe. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - TucumĂĄn. Instituto Superior de Investigaciones BiolĂłgicas. Universidad Nacional de TucumĂĄn. Instituto Superior de Investigaciones BiolĂłgicas; ArgentinaFil: Gill, Jason. Texas A&M University; Estados UnidosFil: Gonzalez, Carlos. Texas A&M University; Estados UnidosFil: Liu, Mei. Texas A&M University; Estados Unido

    Complete genome sequence of burkholderia cenocepacia phage mica

    Get PDF
    Burkholderia cenocepacia is a multidrug-resistant Gram-negative pathogen known to colonize patients with chronic granulomatous disease and cystic fibrosis. Here, we describe Burkholderia phage Mica, which is predicted to be a lysogenic myophage based on the similarity of its structural proteins to Enterobacteria phage P2 and Burkholderia phage KL3.Fil: Garcia, James. Texas A&M University; Estados UnidosFil: Yao, Guichun. Texas A&M University; Estados UnidosFil: Vizoso Pinto, MarĂ­a Guadalupe. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - TucumĂĄn. Instituto Superior de Investigaciones BiolĂłgicas. Universidad Nacional de TucumĂĄn. Instituto Superior de Investigaciones BiolĂłgicas; ArgentinaFil: Clark, James. Texas A&M University; Estados UnidosFil: Le, Tram. Texas A&M University; Estados UnidosFil: Gonzalez, Carlos. Texas A&M University; Estados UnidosFil: Gill, Jason. Texas A&M University; Estados UnidosFil: Liu, Mei. Texas A&M University; Estados Unido

    A new method for the solution of the Schrodinger equation

    Full text link
    We present a new method for the solution of the Schrodinger equation applicable to problems of non-perturbative nature. The method works by identifying three different scales in the problem, which then are treated independently: An asymptotic scale, which depends uniquely on the form of the potential at large distances; an intermediate scale, still characterized by an exponential decay of the wave function and, finally, a short distance scale, in which the wave function is sizable. The key feature of our method is the introduction of an arbitrary parameter in the last two scales, which is then used to optimize a perturbative expansion in a suitable parameter. We apply the method to the quantum anharmonic oscillator and find excellent results.Comment: 4 pages, 4 figures, RevTex
    • 

    corecore