151 research outputs found

    Importance of Intracellular pH in Determining the Uptake and Efficacy of the Weakly Basic Chemotherapeutic Drug, Doxorubicin

    Get PDF
    Low extracellular pH (pHe), that is characteristic of many tumours, tends to reduce the uptake of weakly basic drugs, such as doxorubicin, thereby conferring a degree of physiological resistance to chemotherapy. It has been assumed, from pH-partition theory, that the effect of intracellular pH (pHi) is symmetrically opposite, although this has not been tested experimentally. Doxorubicin uptake into colon HCT116 cells was measured using the drug's intrinsic fluorescence under conditions that alter pHi and pHe or pHi alone. Acutely, doxorubicin influx across the cell-membrane correlates with the trans-membrane pH-gradient (facilitated at alkaline pHe and acidic pHi). However, the protonated molecule is not completely membrane-impermeant and, therefore, overall drug uptake is less pHe-sensitive than expected from pH-partitioning. Once inside cells, doxorubicin associates with slowly-releasing nuclear binding sites. The occupancy of these sites increases with pHi, such that steady-state drug uptake can be greater with alkaline cytoplasm, in contradiction to pH-partition theory. Measurements of cell proliferation demonstrate that doxorubicin efficacy is enhanced at alkaline pHi and that pH-partition theory is inadequate to account for this. The limitations in the predictive power of pH-partition theory arise because it only accounts for the pHi/pHe-sensitivity of drug entry into cells but not the drug's subsequent interactions that, independently, show pHi-dependence. In summary, doxorubicin uptake into cells is favoured by high pHe and high pHi. This modified formalism should be taken into account when designing manoeuvres aimed at increasing doxorubicin efficacy

    Tumor response to radiotherapy is dependent on genotype-associated mechanisms in vitro and in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously shown that in vitro radiosensitivity of human tumor cells segregate non-randomly into a limited number of groups. Each group associates with a specific genotype. However we have also shown that abrogation of a single gene (p21) in a human tumor cell unexpectedly sensitized xenograft tumors comprised of these cells to radiotherapy while not affecting in vitro cellular radiosensitivity. Therefore in vitro assays alone cannot predict tumor response to radiotherapy.</p> <p>In the current work, we measure in vitro radiosensitivity and in vivo response of their xenograft tumors in a series of human tumor lines that represent the range of radiosensitivity observed in human tumor cells. We also measure response of their xenograft tumors to different radiotherapy protocols. We reduce these data into a simple analytical structure that defines the relationship between tumor response and total dose based on two coefficients that are specific to tumor cell genotype, fraction size and total dose.</p> <p>Methods</p> <p>We assayed in vitro survival patterns in eight tumor cell lines that vary in cellular radiosensitivity and genotype. We also measured response of their xenograft tumors to four radiotherapy protocols: 8 × 2 Gy; 2 × 5Gy, 1 × 7.5 Gy and 1 × 15 Gy. We analyze these data to derive coefficients that describe both in vitro and in vivo responses.</p> <p>Results</p> <p>Response of xenografts comprised of human tumor cells to different radiotherapy protocols can be reduced to only two coefficients that represent 1) total cells killed as measured in vitro 2) additional response in vivo not predicted by cell killing. These coefficients segregate with specific genotypes including those most frequently observed in human tumors in the clinic. Coefficients that describe in vitro and in vivo mechanisms can predict tumor response to any radiation protocol based on tumor cell genotype, fraction-size and total dose.</p> <p>Conclusions</p> <p>We establish an analytical structure that predicts tumor response to radiotherapy based on coefficients that represent in vitro and in vivo responses. Both coefficients are dependent on tumor cell genotype and fraction-size. We identify a novel previously unreported mechanism that sensitizes tumors in vivo; this sensitization varies with tumor cell genotype and fraction size.</p

    Carbonic anhydrase XII is a marker of good prognosis in invasive breast carcinoma

    Get PDF
    Hypoxia and pH influence gene expression in tumours, and it is becoming increasingly clear that the pattern of genes expressed by a tumour determines its growth and survival characteristics. Hypoxia-inducible factor-1 (HIF-1) is a key mediator of the cellular response to hypoxia and high HIF-1 expression has been identified as a poor prognostic factor in tumours. Recently, we identified the tumour-associated carbonic anhydrases (CA), CA9 and CA12 as hypoxia-inducible in tumour cell lines. Furthermore, we identified CA IX to be a poor prognostic factor in breast cancer. The aim of this study was to assess the prognostic significance of CA XII. CA XII expression was studied by immunohistochemistry in a series of 103 cases of invasive breast cancer and any association with recognised prognostic factors or relation with the outcome was examined. CA XII expression was present in 77 out of 103 (75%) cases and was associated with lower grade (P=0.001), positive estrogen receptor status (P&lt;0.001), and negative epidermal growth factor receptor status (P&lt;0.001). Furthermore, although CA XII expression was associated with an absence of necrosis (P&lt;0.001), expression of CA XII in some high-grade tumours was induced in regions directly adjacent to morphological necrosis. Additionally, using univariate analysis, CA XII positive tumours were associated with a lower relapse rate (P=0.04) and a better overall survival (P=0.01). In conclusion, CA XII expression is influenced both by factors related to differentiation and hypoxia in breast cancer in vivo and CA XII expression is associated with a better prognosis in an unselected series of invasive breast carcinoma patients

    Reversion of pH-Induced Physiological Drug Resistance: A Novel Function of Copolymeric Nanoparticles

    Get PDF
    The extracellular pH of cancer cells is lower than the intracellular pH. Weakly basic anticancer drugs will be protonated extracellularly and display a decreased intracellular concentration. In this study, we show that copolymeric nanoparticles (NPs) are able to overcome this “pH-induced physiological drug resistance” (PIPDR) by delivering drugs to the cancer cells via endocytosis rather than passive diffussion.As a model nanoparticle, Tetradrine (Tet, Pka 7.80) was incorporated into mPEG-PCL. The effectiveness of free Tet and Tet-NPs were compared at different extracellular pHs (pH values 6.8 and 7.4, respectively) by MTT assay, morphological observation and apoptotic analysis in vitro and on a murine model by tumor volume measurement, PET-CT scanning and side effect evaluation in vivo.<0.05) when the extracellular pH decreased from 7.4 to 6.8. Meanwhile, the cytotoxicity of Tet-NPs was not significantly influenced by reduced pH. In vivo experiment also revealed that Tet-NPs reversed PIPDR more effectively than other existing methods and with much less side effects.The reversion of PIPDR is a new discovered mechanism of copolymeric NPs. This study emphasized the importance of cancer microenvironmental factors in anticancer drug resistance and revealed the superiority of nanoscale drug carrier from a different aspect

    Приватизация жилья в России

    Get PDF
    textabstractIt has long been established that hyperthermia increases the therapeutic benefit of radiation and chemotherapy in cancer treatment. During the last few years there have been substantial technical improvements in the sources used to apply and measure heat, which greatly increases enthusiasm for the clinical use of hyperthermia. These advances are converging with a better understanding of the physiological and molecular effects of hyperthermia. Therefore, we are now at a juncture where the parameters that will influence the efficacy of hyperthermia in cancer treatment can be optimised in a more systematic and rational manner. In addition, the novel insights in hyperthermia’s many biological effects on tumour cells will ultimately result in new treatment regimes. For example, the molecular effects of hyperthermia on the essential cellular process of DNA repair suggest novel combination therapies, with DNA damage response targeting drugs that should now be clinically explored. Here, we provide an overview of recent studies on the various macroscopic and microscopic biological effects of hyperthermia. We indicate the significance of these effects on current treatments and suggest how they will help design novel future treatments

    The Genomic Analysis of Lactic Acidosis and Acidosis Response in Human Cancers

    Get PDF
    The tumor microenvironment has a significant impact on tumor development. Two important determinants in this environment are hypoxia and lactic acidosis. Although lactic acidosis has long been recognized as an important factor in cancer, relatively little is known about how cells respond to lactic acidosis and how that response relates to cancer phenotypes. We develop genome-scale gene expression studies to dissect transcriptional responses of primary human mammary epithelial cells to lactic acidosis and hypoxia in vitro and to explore how they are linked to clinical tumor phenotypes in vivo. The resulting experimental signatures of responses to lactic acidosis and hypoxia are evaluated in a heterogeneous set of breast cancer datasets. A strong lactic acidosis response signature identifies a subgroup of low-risk breast cancer patients having distinct metabolic profiles suggestive of a preference for aerobic respiration. The association of lactic acidosis response with good survival outcomes may relate to the role of lactic acidosis in directing energy generation toward aerobic respiration and utilization of other energy sources via inhibition of glycolysis. This “inhibition of glycolysis” phenotype in tumors is likely caused by the repression of glycolysis gene expression and Akt inhibition. Our study presents a genomic evaluation of the prognostic information of a lactic acidosis response independent of the hypoxic response. Our results identify causal roles of lactic acidosis in metabolic reprogramming, and the direct functional consequence of lactic acidosis pathway activity on cellular responses and tumor development. The study also demonstrates the utility of genomic analysis that maps expression-based findings from in vitro experiments to human samples to assess links to in vivo clinical phenotypes
    corecore