30 research outputs found

    Properties of the Inner Pore Region of TRPV1 Channels Revealed by Block with Quaternary Ammoniums

    Get PDF
    The transient receptor potential vanilloid 1 (TRPV1) nonselective cationic channel is a polymodal receptor that activates in response to a wide variety of stimuli. To date, little structural information about this channel is available. Here, we used quaternary ammonium ions (QAs) of different sizes in an effort to gain some insight into the nature and dimensions of the pore of TRPV1. We found that all four QAs used, tetraethylammonium (TEA), tetrapropylammonium (TPrA), tetrabutylammonium, and tetrapentylammonium, block the TRPV1 channel from the intracellular face of the channel in a voltage-dependent manner, and that block by these molecules occurs with different kinetics, with the bigger molecules becoming slower blockers. We also found that TPrA and the larger QAs can only block the channel in the open state, and that they interfere with the channel's activation gate upon closing, which is observed as a slowing of tail current kinetics. TEA does not interfere with the activation gate, indicating that this molecule can reside in its blocking site even when the channel is closed. The dependence of the rate constants on the size of the blocker suggests a size of around 10 Å for the inner pore of TRPV1 channels

    Dequalinium: A Novel, High-affinity Blocker of CNGA1 Channels

    Get PDF
    Cyclic nucleotide–gated (CNG) channels have been shown to be blocked by diltiazem, tetracaine, polyamines, toxins, divalent cations, and other compounds. Dequalinium is an organic divalent cation which suppresses the rat small conductance Ca2+-activated K+ channel 2 (rSK2) and the activity of protein kinase C. In this study, we have tested the ability of dequalinium to block CNGA1 channels and heteromeric CNGA1+CNGB1 channels. When applied to the intracellular side of inside-out excised patches from Xenopus oocytes, dequalinium blocks CNGA1 channels with a K1/2 ≈ 190 nM and CNGA1+CNGB1 channels with a K1/2 ≈ 385 nM, at 0 mV. This block occurs in a state-independent fashion, and is voltage dependent with a zδ ≈ 1. Our data also demonstrate that dequalinium interacts with the permeant ion probably because it occupies a binding site in the ion conducting pathway. Dequalinium applied to the extracellular surface also produced block, but with a voltage dependence that suggests it crosses the membrane to block from the inside. We also show that at the single-channel level, dequalinium is a slow blocker that does not change the unitary conductance of CNGA1 channels. Thus, dequalinium should be a useful tool for studying permeation and gating properties of CNG channels

    State-dependent Block of CNG Channels by Dequalinium

    Get PDF
    Cyclic nucleotide–gated (CNG) ion channels are nonselective cation channels with a high permeability for Ca(2+). Not surprisingly, they are blocked by a number of Ca(2+) channel blockers including tetracaine, pimozide, and diltiazem. We studied the effects of dequalinium, an extracellular blocker of the small conductance Ca(2+)-activated K(+) channel. We previously noted that dequalinium is a high-affinity blocker of CNGA1 channels from the intracellular side, with little or no state dependence at 0 mV. Here we examined block by dequalinium at a broad range of voltages in both CNGA1 and CNGA2 channels. We found that dequalinium block was mildly state dependent for both channels, with the affinity for closed channels 3–5 times higher than that for open channels. Mutations in the S4-S5 linker did not alter the affinity of open channels for dequalinium, but increased the affinity of closed channels by 10–20-fold. The state-specific effect of these mutations raises the question of whether/how the S4-S5 linker alters the binding of a blocker within the ion permeation pathway

    The Role of Allosteric Coupling on Thermal Activation of Thermo-TRP Channels

    Get PDF
    AbstractThermo-transient receptor potential channels display outstanding temperature sensitivity and can be directly gated by low or high temperature, giving rise to cold- and heat-activated currents. These constitute the molecular basis for the detection of changes in ambient temperature by sensory neurons in animals. The mechanism that underlies the temperature sensitivity in thermo-transient receptor potential channels remains unknown, but has been associated with large changes in standard-state enthalpy (ΔHo) and entropy (ΔSo) upon channel gating. The magnitude, sign, and temperature dependence of ΔHo and ΔSo, the last given by an associated change in heat capacity (ΔCp), can determine a channel’s temperature sensitivity and whether it is activated by cooling, heating, or both, if ΔCp makes an important contribution. We show that in the presence of allosteric gating, other parameters, besides ΔHo and ΔSo, including the gating equilibrium constant, the strength- and temperature dependence of the coupling between gating and the temperature-sensitive transitions, as well as the ΔHo/ΔSo ratio associated with them, can also determine a channel’s temperature-dependent activity, and even give rise to channels that respond to both cooling and heating in a ΔCp-independent manner
    corecore