35 research outputs found

    Non-Invasive In Vivo Imaging of Calcium Signaling in Mice

    Get PDF
    Rapid and transient elevations of Ca2+ within cellular microdomains play a critical role in the regulation of many signal transduction pathways. Described here is a genetic approach for non-invasive detection of localized Ca2+ concentration ([Ca2+]) rises in live animals using bioluminescence imaging (BLI). Transgenic mice conditionally expressing the Ca2+-sensitive bioluminescent reporter GFP-aequorin targeted to the mitochondrial matrix were studied in several experimental paradigms. Rapid [Ca2+] rises inside the mitochondrial matrix could be readily detected during single-twitch muscle contractions. Whole body patterns of [Ca2+] were monitored in freely moving mice and during epileptic seizures. Furthermore, variations in mitochondrial [Ca2+] correlated to behavioral components of the sleep/wake cycle were observed during prolonged whole body recordings of newborn mice. This non-invasive imaging technique opens new avenues for the analysis of Ca2+ signaling whenever whole body information in freely moving animals is desired, in particular during behavioral and developmental studies

    Calcium signalling: dynamics, homeostasis and remodelling

    No full text
    Ca2+ is a highly versatile intracellular signal that operates over a wide temporal range to regulate many different cellular processes. An extensive Ca2+-signalling toolkit is used to assemble signalling systems with very different spatial and temporal dynamics. Rapid highly localized Ca2+ spikes regulate fast responses, whereas slower responses are controlled by repetitive global Ca2+ transients or intracellular Ca2+ waves. Ca2+ has a direct role in controlling the expression patterns of its signalling systems that are constantly being remodelled in both health and disease
    corecore