24 research outputs found

    The SARS-CoV-2 Alpha variant was associated with increased clinical severity of COVID-19 in Scotland: A genomics-based retrospective cohort analysis

    Get PDF
    Objectives The SARS-CoV-2 Alpha variant was associated with increased transmission relative to other variants present at the time of its emergence and several studies have shown an association between Alpha variant infection and increased hospitalisation and 28-day mortality. However, none have addressed the impact on maximum severity of illness in the general population classified by the level of respiratory support required, or death. We aimed to do this. Methods In this retrospective multi-centre clinical cohort sub-study of the COG-UK consortium, 1475 samples from Scottish hospitalised and community cases collected between 1st November 2020 and 30th January 2021 were sequenced. We matched sequence data to clinical outcomes as the Alpha variant became dominant in Scotland and modelled the association between Alpha variant infection and severe disease using a 4-point scale of maximum severity by 28 days: 1. no respiratory support, 2. supplemental oxygen, 3. ventilation and 4. death. Results Our cumulative generalised linear mixed model analyses found evidence (cumulative odds ratio: 1.40, 95% CI: 1.02, 1.93) of a positive association between increased clinical severity and lineage (Alpha variant versus pre-Alpha variants). Conclusions The Alpha variant was associated with more severe clinical disease in the Scottish population than co-circulating lineages

    Effects of keratin 14 ablation on the clinical and cellular phenotype in a kindred with recessive epidermolysis bullosa simplex

    No full text
    We studied a kindred with recessive epidermolysis bullosa simplex in which the affected members lacked expression of the basal cell keratin 14, The patients had severe generalized skin blistering that improved slightly with age, The basal cells of the patients did not express keratin 14 and contained no keratin intermediate filaments. The expression of keratin 5, the obligate copolymer of keratin 14, was slightly reduced, The expression of keratin 15, the alternative basal cell keratin, was increased, suggesting upregulation or stabilization to compensate for the lack of keratin 14, The expression of keratin 16, keratin 17, and keratin 19 in the patient's skin was not different from controls. Immunoelectron microscopy showed a loose network of keratin 5/keratin 15 protofilaments in the basal cells. Keratin 15 filaments did not aggregate into higher order bundles. Sequence analysis of genomic DNA revealed a homozygous mutation in the 3'-acceptor splice site of intron 1 (1840 A-->C) in the affected individuals. This mutation led to the skipping of exon 2 in 24% of the KRT14 transcripts and to the use of a cryptic splice site in 76% of the transcripts, Premature termination codons were generated in all transcripts (codons 175+1 or 175+29), leading to a truncated keratin 14 protein within the helical 1B rod domain. The disorder was associated with circumscribed hyperkeratotic lesions with the histology of epidermolytic hyperkeratosis. The prognosis of keratin 14 ablation is much better in the human than in the mouse

    Effects of keratin 14 ablation on the clinical and cellular phenotype in a kindred with recessive epidermolysis bullosa simplex

    No full text
    We studied a kindred with recessive epidermolysis bullosa simplex in which the affected members lacked expression of the basal cell keratin 14, The patients had severe generalized skin blistering that improved slightly with age, The basal cells of the patients did not express keratin 14 and contained no keratin intermediate filaments. The expression of keratin 5, the obligate copolymer of keratin 14, was slightly reduced, The expression of keratin 15, the alternative basal cell keratin, was increased, suggesting upregulation or stabilization to compensate for the lack of keratin 14, The expression of keratin 16, keratin 17, and keratin 19 in the patient's skin was not different from controls. Immunoelectron microscopy showed a loose network of keratin 5/keratin 15 protofilaments in the basal cells. Keratin 15 filaments did not aggregate into higher order bundles. Sequence analysis of genomic DNA revealed a homozygous mutation in the 3'-acceptor splice site of intron 1 (1840 A--&gt;C) in the affected individuals. This mutation led to the skipping of exon 2 in 24% of the KRT14 transcripts and to the use of a cryptic splice site in 76% of the transcripts, Premature termination codons were generated in all transcripts (codons 175+1 or 175+29), leading to a truncated keratin 14 protein within the helical 1B rod domain. The disorder was associated with circumscribed hyperkeratotic lesions with the histology of epidermolytic hyperkeratosis. The prognosis of keratin 14 ablation is much better in the human than in the mouse.</p

    The transcriptional coactivator PC4/Sub1 has multiple functions in RNA polymerase II transcription

    No full text
    Transcription and processing of mRNA precursors are coordinated events that require numerous complex interactions to ensure that they are successfully executed. We described previously an unexpected association between a transcription factor, PC4 (or Sub1 in yeast), and an mRNA polyadenylation factor, CstF-64 (Rna15 in yeast), and provided evidence that this was important for efficient transcription elongation. Here we provide insight into the mechanism by which this occurs. We show that Sub1 and Rna15 are recruited to promoters and present along the length of several yeast genes. Allele-specific genetic interactions between SUB1 and genes encoding an RNA polymerase II (RNAP II)-specific kinase (KIN28) and phosphatase (FCP1) suggest that Sub1 influences and/or is sensitive to the phosphorylation status of elongating RNAP II. Remarkably, we find that cells lacking Sub1 display decreased accumulation of Fcp1, altered RNAP II phosphorylation and decreased crosslinking of RNAP II to transcribed genes. Our data provide evidence that Rna15 and Sub1 are present along the length of several genes and that Sub1 facilitates elongation by influencing enzymes that modify RNAP II
    corecore