23 research outputs found

    Enhanced Functional Recovery in MRL/MpJ Mice after Spinal Cord Dorsal Hemisection

    Get PDF
    Adult MRL/MpJ mice have been shown to possess unique regeneration capabilities. They are able to heal an ear-punched hole or an injured heart with normal tissue architecture and without scar formation. Here we present functional and histological evidence for enhanced recovery following spinal cord injury (SCI) in MRL/MpJ mice. A control group (C57BL/6 mice) and MRL/MpJ mice underwent a dorsal hemisection at T9 (thoracic vertebra 9). Our data show that MRL/MpJ mice recovered motor function significantly faster and more completely. We observed enhanced regeneration of the corticospinal tract (CST). Furthermore, we observed a reduced astrocytic response and fewer micro-cavities at the injury site, which appear to create a more growth-permissive environment for the injured axons. Our data suggest that the reduced astrocytic response is in part due to a lower lesion-induced increase of cell proliferation post-SCI, and a reduced astrocytic differentiation of the proliferating cells. Interestingly, we also found an increased number of proliferating microglia, which could be involved in the MRL/MpJ spinal cord repair mechanisms. Finally, to evaluate the molecular basis of faster spinal cord repair, we examined the difference in gene expression changes in MRL/MpJ and C57BL/6 mice after SCI. Our microarray data support our histological findings and reveal a transcriptional profile associated with a more efficient spinal cord repair in MRL/MpJ mice

    Enantioselective pharmacokinetics and cardiovascular effects of nebivolol in L-NAME hypertensive rats

    Get PDF
    The cardiovascular effects and pharmacokinetics of nebivolol were assessed in N(G)-nitro-l-arginine methyl ester (L-NAME) hypertensive and normotensive control rats. Male Wistar rats were randomly divided to drink tap water (control) or L-NAME solution for 2 weeks. The effects of nebivolol (3 or 10 mg kg−1 i.v.) on blood pressure (BP), heart rate and BP variability (BPV) were recorded in awake L-NAME and control rats. Short-term and beat-to-beat BPV was assessed by the s.d. and spectral analysis of the BP recordings. Nebivolol pharmacokinetics was studied by means of traditional blood sampling. Nebivolol showed enantioselective pharmacokinetics in both experimental groups; the clearance and the volume of distribution of l-nebivolol were significantly greater than those of the d-enantiomer. The hypotensive response to nebivolol was significantly enhanced in L-NAME rats (Δmean arterial pressure (MAP): −16.1±1.1%, P<0.05 vs. control rats) compared with normotensive animals (ΔMAP: −1.4±2.1%). An analysis of the beat-to-beat BPV showed a greater reduction in VLF BPV in the L-NAME compare with the control rats. Nebivolol significantly reduced the low-frequency/high-frequency ratio in hypertensive L-NAME animals compared with normotensive rats. Short-term BPV was markedly reduced by nebivolol in both experimental groups, although the attenuation of the s.d. of BP recording was greater in L-NAME rats. In conclusion, the hypotensive efficacy of nebivolol is significantly enhanced in L-NAME rats compared with normotensive animals, which is most likely due to a greater reduction in vascular sympathetic activity. Nebivolol markedly attenuated short-term BPV in both experimental groups, suggesting that β-blockers with additional pharmacological actions provide beneficial cardiovascular effects by controlling high BP and its short-term variability.Fil: Bertera, Facundo Martin. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: del Mauro, Julieta Sofía. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Lovera, Valeria. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Chiappetta, Diego Andrés. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Tecnología Farmacéutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Polizio, Ariel Héctor. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Taira, Carlos Alberto. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Höcht, Christian. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentin
    corecore