4 research outputs found

    Concomitant Control of Mechanical Properties and Degradation in Resorbable Elastomer-like Materials Using Stereochemistry and Stoichiometry for Soft Tissue Engineering

    Get PDF
    YesComplex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery

    The use of PLDLA/PCL-T scaffold to repair osteochondral defects in vivo

    No full text
    The physiological repair of osteochondral lesions requires the development of a scaffold that is compatible with the structure of the damaged tissue, cartilage and bone. The aim of this study was to evaluate the biological performance of a PLDLA/PCL-T (90/10) scaffold for repairing osteochondral defects in rabbits. Polymeric scaffolds containing saccharose (75% w/v) were obtained by solvent casting and then implanted in the medial knee condyles of 12 New Zealand rabbits after osteochondral damage with a trephine metallic drill (diameter: 3.3 mm) in both medial femoral condyles. Each rabbit received the same treatment, i.e., the polymeric scaffold was implanted on the right side while no material was implanted on the left side (control). Four and 12 weeks later histological examination revealed bone neoformation in the implant group, with the presence of hyaline cartilage and mesenchymal tissue. In contrast, the control group showed bone neoformation with necrosis, exacerbated superficial fibrosis, inflammation and cracks in the neoformed tissue. These findings indicate that the PLDLA/PCL-T scaffold was biocompatible and protected the condyles by stabilizing the lesion and allowing subchondral bone tissue and hyaline cartilage formation
    corecore