3,000 research outputs found

    Efficient coupling into slow light photonic crystal waveguide without transition region: Role of evanescent modes

    Full text link
    We show that efficient coupling between fast and slow photonic crystal waveguide modes is possible, provided that there exist strong evanescent modes to match the waveguide fields across the interface. Evanescent modes are required when the propagating modes have substantially different modal fields, which occurs, for example, when coupling an index-guided mode and a gap-guided mode. ©2009 Optical Society of America

    Efficient slow-light coupling in a photonic crystal waveguide without transition region

    Full text link
    We consider the coupling into a slow mode that appears near an inflection point in the band structure of a photonic crystal waveguide. Remarkably, the coupling into this slow mode, which has a group index ng > 1000, can be essentially perfect without any transition region. We show that this efficient coupling occurs thanks to an evanescent mode in the slow medium, which has appreciable amplitude and helps satisfy the boundary conditions but does not transport any energy. © 2008 Optical Society of America

    Symmetry and degeneracy in microstructured optical fibers

    Full text link
    The symmetry of an optical waveguide determines its modal degeneracies. A fiber with rotational symmetry of order higher than 2 has modes that either are nondegenerate and support the complete fiber symmetry or are twofold degenerate pairs of lower symmetry. The latter case applies to the fundamental modes of perfect microstructured optical fibers, guaranteeing that such fibers are not birefringent. We explore two numerical methods and demonstrate their agreement with these symmetry constraints. © 2001 Optical Society of America

    Confinement losses in microstructured optical fibers

    Full text link
    We describe a multipole formulation that can be used for high-accuracy calculations of the full complex propagation constant of a microstructured optical fiber with a finite number of holes. We show how the imaginary part of the microstructure, which describes confinement losses not associated with absorption, varies with hole size, the number of rings of holes, and wavelength, and give the minimum number of rings of holes required for a specific loss for given parameters. © 2001 Optical Society of America

    The Parameterized Complexity of Centrality Improvement in Networks

    Full text link
    The centrality of a vertex v in a network intuitively captures how important v is for communication in the network. The task of improving the centrality of a vertex has many applications, as a higher centrality often implies a larger impact on the network or less transportation or administration cost. In this work we study the parameterized complexity of the NP-complete problems Closeness Improvement and Betweenness Improvement in which we ask to improve a given vertex' closeness or betweenness centrality by a given amount through adding a given number of edges to the network. Herein, the closeness of a vertex v sums the multiplicative inverses of distances of other vertices to v and the betweenness sums for each pair of vertices the fraction of shortest paths going through v. Unfortunately, for the natural parameter "number of edges to add" we obtain hardness results, even in rather restricted cases. On the positive side, we also give an island of tractability for the parameter measuring the vertex deletion distance to cluster graphs

    Calculations of air-guided modes in photonic crystal fibers using the multipole method

    Full text link
    We demonstrate that a combination of multipole and Bloch methods is well suited for calculating the modes of air core photonic crystal fibers. This includes determining the reflective properties of the cladding, which is a prerequisite for the modal calculations. We demonstrate that in the presence of absorption, the modal losses can be substantially smaller than in the corresponding bulk medium. © 2001 Optical Society of America

    Supermassive black holes do not correlate with dark matter halos of galaxies

    Full text link
    Supermassive black holes have been detected in all galaxies that contain bulge components when the galaxies observed were close enough so that the searches were feasible. Together with the observation that bigger black holes live in bigger bulges, this has led to the belief that black hole growth and bulge formation regulate each other. That is, black holes and bulges "coevolve". Therefore, reports of a similar correlation between black holes and the dark matter halos in which visible galaxies are embedded have profound implications. Dark matter is likely to be nonbaryonic, so these reports suggest that unknown, exotic physics controls black hole growth. Here we show - based in part on recent measurements of bulgeless galaxies - that there is almost no correlation between dark matter and parameters that measure black holes unless the galaxy also contains a bulge. We conclude that black holes do not correlate directly with dark matter. They do not correlate with galaxy disks, either. Therefore black holes coevolve only with bulges. This simplifies the puzzle of their coevolution by focusing attention on purely baryonic processes in the galaxy mergers that make bulges.Comment: 12 pages, 9 Postscript figures, 1 table; published in Nature (20 January 2011

    Science Models as Value-Added Services for Scholarly Information Systems

    Full text link
    The paper introduces scholarly Information Retrieval (IR) as a further dimension that should be considered in the science modeling debate. The IR use case is seen as a validation model of the adequacy of science models in representing and predicting structure and dynamics in science. Particular conceptualizations of scholarly activity and structures in science are used as value-added search services to improve retrieval quality: a co-word model depicting the cognitive structure of a field (used for query expansion), the Bradford law of information concentration, and a model of co-authorship networks (both used for re-ranking search results). An evaluation of the retrieval quality when science model driven services are used turned out that the models proposed actually provide beneficial effects to retrieval quality. From an IR perspective, the models studied are therefore verified as expressive conceptualizations of central phenomena in science. Thus, it could be shown that the IR perspective can significantly contribute to a better understanding of scholarly structures and activities.Comment: 26 pages, to appear in Scientometric
    • …
    corecore