16 research outputs found
Expression of prostate-specific antigen (PSA) correlates with poor response to tamoxifen therapy in recurrent breast cancer
Prostate-specific antigen (PSA) is a serine protease which may play a role in a variety of cancer types, including breast cancer. In the present study, we evaluated whether the level of PSA in breast tumour cytosol could be associated with prognosis in primary breast cancer, or with response to tamoxifen therapy in recurrent disease. PSA levels were determined by enzyme-linked immunosorbent assay (ELISA) in breast tumour cytosols, and were correlated with prognosis in 1516 patients with primary breast cancer and with response to first-line tamoxifen therapy in 434 patients with recurrent disease. Relating the levels of PSA with classical prognostic factors, low levels were more often found in larger tumours, tumours of older and post-menopausal patients, and in steroid hormone receptor-negative tumours. There was no significant association between the levels of PSA with grade of differentiation or the number of involved lymph nodes. In patients with primary breast cancer, PSA was not significantly related to the rate of relapse, and a positive association of PSA with an improved survival could be attributed to its relationship to age. In patients with recurrent breast cancer, a high level of PSA was significantly related to a poor response to tamoxifen therapy, and a short progression-free and overall survival after start of treatment for recurrent disease. In Cox multivariate analyses for response to therapy and for (progression-free) survival, corrected for age/menopausal status, disease-free interval, site of relapse and steroid hormone receptor status, PSA was an independent variable of poor prognosis. It is concluded that the level of PSA in cytosols of primary breast tumours might be a marker to select breast cancer patients who may benefit from systemic tamoxifen therapy. © 1999 Cancer Research Campaig
Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts
Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007).
Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of âtotal Alâassumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold.
The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2âąâ, generate Al superoxides [Al(O2âą)](H2O5)]+ 2. Semireduced AlO2âą radicals deplete mitochondrial Fe and promote generation of H2O2, O2 âą â and OHâą. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates.
Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants.
The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances
Changepoint Modeling of Longitudinal PSA as a Biomarker for Prostate Cancer
Changepoint Modeling of Longitudinal PSA as a Biomarker for Prostate Cance
Imaging in prostate cancer staging: present role e future perspectives
Despite recent improvements in detection and treatment,
prostate cancer continues to be the most common malignancy
and the second leading cause of cancer-related mortality.
Thus, although survival rate continues to improve,
prostate cancer remains a compelling medical health problem.
The major goal of prostate cancer imaging in the next
decade will be more accurate disease characterization
through the synthesis of anatomic, functional, and molecular
imaging information in order to plan the most appropriate
therapeutic strategy. No consensus exists regarding the
use of imaging for evaluating primary prostate cancer. However,
conventional and functional imaging are expanding
their role in detection and local staging and, moreover, functional
imaging is becoming of great importance in oncologic
management and monitoring of therapy response. This
review presents a multidisciplinary perspective on the role
of conventional and functional imaging methods in prostate
cancer staging