14 research outputs found

    Time-resolved measurements of fast electron recirculation for relativistically intense femtosecond scale laser-plasma interactions

    Get PDF
    A key issue in realising the development of a number of applications of high-intensity lasers is the dynamics of the fast electrons produced and how to diagnose them. We report on measurements of fast electron transport in aluminium targets in the ultra-intense, short-pulse (<50 fs) regime using a high resolution temporally and spatially resolved optical probe. The measurements show a rapidly (≈0.5c) expanding region of Ohmic heating at the rear of the target, driven by lateral transport of the fast electron population inside the target. Simulations demonstrate that a broad angular distribution of fast electrons on the order of 60° is required, in conjunction with extensive recirculation of the electron population, in order to drive such lateral transport. These results provide fundamental new insight into fast electron dynamics driven by ultra-short laser pulses, which is an important regime for the development of laser-based radiation and particle sources

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Measuring the oscillator strength of intercombination lines of helium-like V ions in a laser-produced-plasma

    No full text
    We present results of measurements of the oscillator strength of intercombination lines of He-like Vanadium ions in high energy density (HED) laser-produced-plasmas and compare them with the simulations from commonly used codes and data from the NIST database. Whilst not yet sufficiently accurate to constrain different trusted atomic-physics models for the particular system studied, our results are in agreement with the available data within experimental error bars, yet differ from cruder approximations of the oscillator strength used in certain atomic-kinetics packages, suggesting that this general method could be further extended to be used as a measurement of the oscillator strength of additional atomic transitions under the extreme conditions that are achieved in HED experiments

    Demonstration of geometric effects and resonant scattering in the x-ray spectra of high-energy-density plasmas

    No full text
    In a plasma of sufficient size and density, photons emitted within the system have a probability of being re-absorbed and re-emitted multiple times - a phenomenon known in astrophysics as resonant scattering. This effect alters the ratio of optically-thick to optically thin lines, depending on the plasma geometry and viewing angle, and has significant implications for the spectra observed in a number of astrophysical scenarios, but has not previously been studied in a controlled laboratory plasma. We demonstrate the effect in the x-ray spectra emitted by cylindrical plasmas generated by high power laser irradiation, and the results confirm the geometrical interpretation of resonant scattering

    Demonstration of geometric effects and resonant scattering in the X-Ray spectra of high-energy-density plasmas

    Get PDF
    In a plasma of sufficient size and density, photons emitted within the system have a probability of being reabsorbed and reemitted multiple times—a phenomenon known in astrophysics as resonant scattering. This effect alters the ratio of optically thick to optically thin lines, depending on the plasma geometry and viewing angle, and has significant implications for the spectra observed in a number of astrophysical scenarios, but has not previously been studied in a controlled laboratory plasma. We demonstrate the effect in the x-ray spectra emitted by cylindrical plasmas generated by high power laser irradiation, and the results confirm the geometrical interpretation of resonant scattering

    Laboratory measurements of geometrical effects in the x-ray emission of optically thick lines for ICF diagnostics

    Get PDF
    Understanding the effects of radiative transfer in High Energy Density Physics experiments is critical for the characterization of the thermodynamic properties of highly ionized matter, in particular in Inertial Confinement Fusion (ICF). We report on non-Local Thermodynamic Equilibrium experiments on cylindrical targets carried out at the Omega Laser Facility at the Laboratory for Laser Energetics, Rochester NY, which aim to characterize these effects. In these experiments, a 50/50 mixture of iron and vanadium, with a thickness of 2000 Å and a diameter of 250 μm, is contained within a beryllium tamper, with a thickness of 10 μm and a diameter of 1000 μm. Each side of the beryllium tamper is then irradiated using 18 of the 60 Omega beams with an intensity of roughly 3 × 1014 W cm−2 per side, over a duration of 3 ns. Spectroscopic measurements show that a plasma temperature on the order of 2 keV was produced. Imaging data show that the plasma remains cylindrical, with geometrical aspect ratios (quotient between the height and the radius of the cylinder) from 0.4 to 2.0. The temperatures in this experiment were kept sufficiently low (∼1–2 keV) so that the optically thin Li-like satellite emission could be used for temperature diagnosis. This allowed for the characterization of optical-depth-dependent geometric effects in the vanadium line emission. Simulations present good agreement with the data, which allows this study to benchmark these effects in order to take them into account to deduce temperature and density in future ICF experiments, such as those performed at the National Ignition Facility

    K-alpha and bremsstrahlung x-ray radiation backlighter sources from short pulse laser driven silver targets as a function of laser pre-pulse energy

    No full text
    Measurements of silver K-shell and bremsstrahlung emission from thin-foil laser targets as a function of laser prepulse energy are presented. The silver targets were chosen as a potential 22 keV backlighter source for the National Ignition Facility Experiments. The targets were irradiated by the Titan laser with an intensity of 8 × 1017 W/cm2 with 40 ps pulse length. A secondary nanosecond timescale laser pulse with controlled, variable energy was used to emulate the laser prepulse. Results show a decrease in both Kα and bremsstrahlung yield with increasing artificial prepulse. Radiation hydrodynamic modeling of the prepulse interaction determined that the preplasma and intact target fraction were different in the three prepulse energies investigated. Interaction of the short pulse laser with the resulting preplasma and target was then modeled using a particle-in-cell code PSC which explained the experimental results. The relevance of this work to future Advanced Radiographic Capability laser x-ray backlighter sources is discussed. © 2014 AIP Publishing LLC
    corecore