1,030 research outputs found

    The Exploration and Evaluation of Generating Affective 360^\circ Panoramic VR Environments Through Neural Style Transfer

    Full text link
    Affective virtual reality (VR) environments with varying visual style can impact users' valence and arousal responses. We applied Neural Style Transfer (NST) to generate 360^\circ VR environments that elicited users' varied valence and arousal responses. From a user study with 30 participants, findings suggested that generative VR environments changed participants' arousal responses but not their valence levels. The generated visual features, e.g., textures and colors, also altered participants' affective perceptions. Our work contributes novel insights about how users respond to generative VR environments and provided a strategy for creating affective VR environments without altering content

    Land expropriation compensation among multiple stakeholders in a mining area: explaining “skeleton house” compensation

    Get PDF
    House demolition compensation in mining areas in China is determined by house size. This has led farmers to engage in “skeleton house” construction, namely, building simple structures that can increase the compensation obtained following land expropriation. While compensation standards and social security for land-expropriated farmers has received some research attention, investigations are yet to consider this challenge from different stakeholder perspectives. Clearly identifying the interests and interactive relationships of each group offers potential to deliver positive outcomes for all stakeholders and for the environment. This paper targets this gap using document analysis alongside semi-structured interviews with the Pingshou China Coal Corporation (PCCC), Pinglu District Government (PDG) and land-expropriated farmers in Shanxi Province in Northwest China, identifying reasons for and potential solutions to, the phenomenon of skeleton house construction. Novel application of the DPSIR (driving forces-pressures-statuses-impacts-responses) framework as a structuring tool for our analysis provides important insight into how the emerging situation has arisen and helps to identify potential countermeasures. There are many differences among the perspectives of the three stakeholder groups, and all are responsible for the phenomenon of skeleton houses. PCCC should follow different production routes to reduce their costs and the impacts on farmers. District Government should shift from a coping position (dealing with negative impacts from the coal industry) towards actively shaping coal industry development, thus reducing its negative impacts on wider society. Land-expropriated farmers should actively participate in meaningful discussions to assist PCCC and PDG to make reasonable and considerate compensation standards and social security policies

    Function and dysfunction of the PI system in membrane trafficking

    Get PDF
    The phosphoinositides (PIs) function as efficient and finely tuned switches that control the assembly–disassembly cycles of complex molecular machineries with key roles in membrane trafficking. This important role of the PIs is mainly due to their versatile nature, which is in turn determined by their fast metabolic interconversions. PIs can be tightly regulated both spatially and temporally through the many PI kinases (PIKs) and phosphatases that are distributed throughout the different intracellular compartments. In spite of the enormous progress made in the past 20 years towards the definition of the molecular details of PI–protein interactions and of the regulatory mechanisms of the individual PIKs and phosphatases, important issues concerning the general principles of the organisation of the PI system and the coordination of the different PI-metabolising enzymes remain to be addressed. The answers should come from applying a systems biology approach to the study of the PI system, through the integration of analyses of the protein interaction data of the PI enzymes and the PI targets with those of the ‘phenomes' of the genetic diseases that involve these PI-metabolising enzymes

    Oscillatory behaviour on a non-autonomous hybrid SIR-Model

    Get PDF
    We study the impact of some abstract agent intervention on the disease spread modelled by a SIR-model with linear growth infectivity. The intervention is meant to decrease the infectivity, which are activated by a threshold on the number of infected individuals. The coupled model is represented as a nonlinear non-autonomous hybrid system. Stability and reduction results are obtained using the notions of non-autonomous attractors, Bohl exponents, and dichotomy spectrum. Numerical examples are given where the number of infected individuals can oscillate around a equilibrium point or be a succession of bump functions, which are validated with a tool based on the notion of delta-complete decision procedures for solving satisfiability modulo theories problems over the real numbers and bounded delta-reachability. These findings seem to show that hybrid SIR-models are more flexible than standard models and generate a vast set of solution profiles. It also raises questions regarding the possibility of the agent intervention been somehow responsible for the shape and intensity of future outbreaks.publishe

    Selection of Saccharomyces cerevisiae strains for efficient very high gravity bio-ethanol fermentation processes

    Get PDF
    An optimized very high gravity (VHG) glucose medium supplemented with low cost nutrient sources was used to evaluate bio-ethanol production by 11 Saccharomyces cerevisiae strains. The industrial strains PE-2 and CA1185 exhibited the best overall fermentation performance, producing an ethanol titre of 19.2% (v/v) corresponding to a batch productivity of 2.5 g l-1 h-1, while the best laboratory strain (CEN.PK 113-7D) produced 17.5% (v/v) ethanol with a productivity of 1.7 g l-1 h-1. The results presented here emphasize the biodiversity found within S. cerevisiae species and that naturally adapted strains, such as PE-2 and CA1185, are likely to play a key role in facilitating the transition from laboratory technological breakthroughs to industrialscale bio-ethanol fermentations.Fundação para a Ciência e a Tecnologia (FCT) - PTDC/BIO/66151/2006, SFRH/ BD/64776/2009, SFRH/BPD/44328/ 200

    Targeting RNA Polymerase Primary σ70 as a Therapeutic Strategy against Methicillin-Resistant Staphylococcus aureus by Antisense Peptide Nucleic Acid

    Get PDF
    BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) causes threatening infection-related mortality worldwide. Currently, spread of multi-drug resistance (MDR) MRSA limits therapeutic options and requires new approaches to "druggable" target discovery, as well as development of novel MRSA-active antibiotics. RNA polymerase primary σ⁷⁰ (encoded by gene rpoD) is a highly conserved prokaryotic factor essential for transcription initiation in exponentially growing cells of diverse S. aureus, implying potential for antisense inhibition. METHODOLOGY/PRINCIPAL FINDINGS: By synthesizing a serial of cell penetrating peptide conjugated peptide nucleic acids (PPNAs) based on software predicted parameters and further design optimization, we identified a target sequence (234 to 243 nt) within rpoD mRNA conserved region 3.0 being more sensitive to antisense inhibition. A (KFF)₃K peptide conjugated 10-mer complementary PNA (PPNA2332) was developed for potent micromolar-range growth inhibitory effects against four pathogenic S. aureus strains with different resistance phenotypes, including clinical vancomycin-intermediate resistance S. aureus and MDR-MRSA isolates. PPNA2332 showed bacteriocidal antisense effect at 3.2 fold of MIC value against MRSA/VISA Mu50, and its sequence specificity was demonstrated in that PPNA with scrambled PNA sequence (Scr PPNA2332) exhibited no growth inhibitory effect at higher concentrations. Also, PPNA2332 specifically interferes with rpoD mRNA, inhibiting translation of its protein product σ⁷⁰ in a concentration-dependent manner. Full decay of mRNA and suppressed expression of σ⁷⁰ were observed for 40 µM or 12.5 µM PPNA2332 treatment, respectively, but not for 40 µM Scr PPNA2332 treatment in pure culture of MRSA/VISA Mu50 strain. PPNA2332 (≥1 µM) essentially cleared lethal MRSA/VISA Mu50 infection in epithelial cell cultures, and eliminated viable bacterial cells in a time- and concentration- dependent manner, without showing any apparent toxicity at 10 µM. CONCLUSIONS: The present result suggested that RNAP primary σ⁷⁰ is a very promising candidate target for developing novel antisense antibiotic to treat severe MRSA infections

    A Mathematical model for Astrocytes mediated LTP at Single Hippocampal Synapses

    Full text link
    Many contemporary studies have shown that astrocytes play a significant role in modulating both short and long form of synaptic plasticity. There are very few experimental models which elucidate the role of astrocyte over Long-term Potentiation (LTP). Recently, Perea & Araque (2007) demonstrated a role of astrocytes in induction of LTP at single hippocampal synapses. They suggested a purely pre-synaptic basis for induction of this N-methyl-D- Aspartate (NMDA) Receptor-independent LTP. Also, the mechanisms underlying this pre-synaptic induction were not investigated. Here, in this article, we propose a mathematical model for astrocyte modulated LTP which successfully emulates the experimental findings of Perea & Araque (2007). Our study suggests the role of retrograde messengers, possibly Nitric Oxide (NO), for this pre-synaptically modulated LTP.Comment: 51 pages, 15 figures, Journal of Computational Neuroscience (to appear

    Application of Flexible Bronchoscopy in Inhalation Lung Injury

    Get PDF
    Background: As acute inhalational injury is an uncommon presentation to most institutions, a standard approach to its assessment and management, especially using flexible bronchoscopy, has not received significant attention. Methods: The objective of this study is to evaluate the value of using flexible bronchoscopy as part of the evaluation and management of patients with inhalational lung injury. Twenty-three cases of inhalational lung injury were treated in our three hospitals after a fire in a residential building. The twenty cases that underwent bronchoscopy as part of their management are included in this analysis. After admission, the first bronchoscopy was conducted within 18-72 hours post inhalational injury. G2-level patients were reexamined 24 hours after the first bronchoscopy, while G1-level patients were reexamined 72 hours later. Subsequently, all patients were re-examined every 2-3 days until recovered or until only tunica mucosa bronchi congestion was identified by bronchoscopy. Results: Twenty patients had airway injury diagnosed by bronchoscopy including burns to the larynx and glottis or large airways. Bronchoscopic classification of the inhalation injury was performed, identifying 12 cases of grade G1 changes and 8 cases of grade G2. The airway injury in the 12 cases of grade G1 patients demonstrated recovery in 2-8 days, in the airway injury of the 8 cases of grade G2 patients had a prolonged recovery with airway injury improving in 6-21 days averaged. The difference in recovery time between the two groups was significant (P Conclusions: The use of flexible bronchoscopy has great value in the diagnosis of inhalational injury without any complications. Its use should be incorporated into clinical practice

    Etching and Narrowing of Graphene from the Edges

    Full text link
    Large scale graphene electronics desires lithographic patterning of narrow graphene nanoribbons (GNRs) for device integration. However, conventional lithography can only reliably pattern ~20nm wide GNR arrays limited by lithography resolution, while sub-5nm GNRs are desirable for high on/off ratio field-effect transistors (FETs) at room temperature. Here, we devised a gas phase chemical approach to etch graphene from the edges without damaging its basal plane. The reaction involved high temperature oxidation of graphene in a slightly reducing environment to afford controlled etch rate (\leq ~1nm/min). We fabricated ~20-30nm wide GNR arrays lithographically, and used the gas phase etching chemistry to narrow the ribbons down to <10nm. For the first time, high on/off ratio up to ~10^4 was achieved at room temperature for FETs built with sub-5nm wide GNR semiconductors derived from lithographic patterning and narrowing. Our controlled etching method opens up a chemical way to control the size of various graphene nano-structures beyond the capability of top-down lithography.Comment: 18 pages, 4 figures, to appear in Nature Chemistr
    corecore