353 research outputs found

    A Structure-Based Approach for Detection of Thiol Oxidoreductases and Their Catalytic Redox-Active Cysteine Residues

    Get PDF
    Cysteine (Cys) residues often play critical roles in proteins, for example, in the formation of structural disulfide bonds, metal binding, targeting proteins to the membranes, and various catalytic functions. However, the structural determinants for various Cys functions are not clear. Thiol oxidoreductases, which are enzymes containing catalytic redox-active Cys residues, have been extensively studied, but even for these proteins there is little understanding of what distinguishes their catalytic redox Cys from other Cys functions. Herein, we characterized thiol oxidoreductases at a structural level and developed an algorithm that can recognize these enzymes by (i) analyzing amino acid and secondary structure composition of the active site and its similarity to known active sites containing redox Cys and (ii) calculating accessibility, active site location, and reactivity of Cys. For proteins with known or modeled structures, this method can identify proteins with catalytic Cys residues and distinguish thiol oxidoreductases from the enzymes containing other catalytic Cys types. Furthermore, by applying this procedure to Saccharomyces cerevisiae proteins containing conserved Cys, we could identify the majority of known yeast thiol oxidoreductases. This study provides insights into the structural properties of catalytic redox-active Cys and should further help to recognize thiol oxidoreductases in protein sequence and structure databases

    Multi-susceptibility genes associated with the risk of the development stages of esophageal squamous cell cancer in Feicheng County

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to evaluate the association of multi-genotype polymorphisms with the stepwise progression of esophageal squamous cell cancer (ESCC) and the possibility of predicting those at higher risk.</p> <p>Methods</p> <p>A total of 1,004 subjects were recruited from Feicheng County, China, between Jan. 2004 and Dec. 2007 and examined by endoscopy for esophageal lesions. These subjects included 270 patients with basal cell hyperplasia (BCH), 262 patients with esophageal squamous cell dysplasia (ESCD), 226 patients with ESCC, and 246 controls with Lugol-voiding area but diagnosed as having normal esophageal squamous epithelial cells by histopathology. The genotypes for <it>CYP2E1 </it>G1259C, <it>hOGG1 </it>C326G, <it>MTHFR </it>C677T, <it>MPO </it>G463A, and <it>ALDH2 </it>allele genes were identified in blood samples collected from all participants.</p> <p>Results</p> <p>The alleles <it>ALDH2 </it>and <it>MTHFR </it>C677T were critical for determining individual susceptibility to esophageal cancer. Compared to the <it>ALDH </it>1*1 genotype, the <it>ALDH </it>2*2 genotype was significantly associated with increased risks of BCH, ESCD, and ESCC. However, the TT genotype of <it>MTHFR </it>C677T only increased the risk of ESCC. Further analysis revealed that the combination of the high-risk genotypes 2*2/1*2 of <it>ALDH </it>2 and TT/TC of <it>MTHFR </it>C677T increased the risk of BCH by 4.0 fold, of ESCD by 3.7 fold, and ESSC by 8.72 fold. The generalized odds ratio (OR<sub>G</sub>) of the two combined genotypes was 1.83 (95%CI: 1.55-2.16), indicating a strong genetic association with the risk of carcinogenic progression in the esophagus.</p> <p>Conclusions</p> <p>The study demonstrated that the genotypes <it>ALDH2*2 </it>and <it>MTHFR </it>677TT conferred elevated risk for developing esophageal carcinoma and that the two susceptibility genotypes combined to synergistically increase the risk.</p

    RNAi-mediated silencing of the Bmi-1 gene causes growth inhibition and enhances doxorubicin-induced apoptosis in MCF-7 cells

    Get PDF
    The oncogene Bmi-1 is a member of the Polycomb group gene family. Its expression is found to be greatly increased in a number of malignant tumors including breast cancer. This could suggest Bmi-1 as a potent therapeutic target. In this study, RNAi was introduced to down-regulate the expression of Bmi-1 in a highly malignant breast adenocarcinoma cell line, MCF-7. A thorough study of the biological behavior and chemosensitivity changes of the MCF-7 cells was carried out in context to the therapeutic potential of Bmi-1. The results obtained indicated that siRNA targeting of Bmi-1 could lead to an efficient and specific inhibition of endogenous Bmi-1 activity. The mRNA and protein expression of Bmi-1 were determined by RT-PCR and Western blot, respectively. Furthermore, silencing of Bmi-1 resulted in a drastic inhibition of the growth of MCF-7 cells as well as G1 /S phase transition. The number of target cells was found to increase in phase G 0 /G 1 and decrease in the S phase, but no increase in the basal level of apoptosis was noticed. On the other hand, a reduction in the expression of cyclin D1 and an increase in the expression of p21 were also noticed. Silencing of Bmi-1 made the MCF-7 cells more sensitive to the chemotherapeutic agent doxorubicin and induced a significantly higher percentage of apoptotic cells. Here, we report on a study regarding the RNAi-mediated silencing of the Bmi-1 gene in breast cancer

    Using an oblique incident laser beam to measure the optical properties of stomach mucosa/submucosa tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of the study is to determine the optical properties and their differences for normal human stomach mucosa/submucosa tissue in the cardiac orifice <it>in vitro </it>at 635, 730, 808, 890 and 980 nm wavelengths of laser.</p> <p>Methods</p> <p>The measurements were performed using a CCD detector, and the optical properties were assessed from the measurements using the spatially resolved reflectance, and nonlinear fitting of diffusion equation.</p> <p>Results</p> <p>The results of measurement showed that the absorption coefficients, the reduced scattering coefficients, the optical penetration depths, the diffusion coefficients, the diffuse reflectance and the shifts of diffuse reflectance of tissue samples at five different wavelengths vary with a change of wavelength. The maximum absorption coefficient for tissue samples is 0.265 mm<sup>-1 </sup>at 980 nm, and the minimum absorption coefficient is 0.0332 mm<sup>-1 </sup>at 730 nm, and the maximum difference in the absorption coefficients is 698% between 730 and 980 nm, and the minimum difference is 1.61% between 635 and 808 nm. The maximum reduced scattering coefficient for tissue samples is 1.19 mm<sup>-1 </sup>at 635 nm, and the minimum reduced scattering coefficient is 0.521 mm<sup>-1 </sup>at 980 nm, and the maximum difference in the reduced scattering coefficients is 128% between 635 and 980 nm, and the minimum difference is 1.15% between 890 and 980 nm. The maximum optical penetration depth for tissue samples is 3.57 mm at 808 nm, and the minimum optical penetration depth is 1.43 mm at 980 nm. The maximum diffusion constant for tissue samples is 0.608 mm at 890 nm, and the minimum diffusion constant is 0.278 mm at 635 nm. The maximum diffuse reflectance is 3.57 mm<sup>-1 </sup>at 808 nm, and the minimum diffuse reflectance is 1.43 mm<sup>-1 </sup>at 980 nm. The maximum shift Δx of diffuse reflectance is 1.11 mm<sup>-1 </sup>at 890 nm, and the minimum shift Δx of diffuse reflectance is 0.507 mm<sup>-1 </sup>at 635 nm.</p> <p>Conclusion</p> <p>The absorption coefficients, the reduced scattering coefficients, the optical penetration depths, the diffusion coefficients, the diffuse reflectance and the shifts of diffuse reflectance of tissue samples at 635, 730, 808, 890 and 980 nm wavelengths vary with a change of wavelength. There were significant differences in the optical properties for tissue samples at five different wavelengths (<it>P </it>< 0.01).</p

    Ancestry of the Iban Is Predominantly Southeast Asian: Genetic Evidence from Autosomal, Mitochondrial, and Y Chromosomes

    Get PDF
    Humans reached present-day Island Southeast Asia (ISEA) in one of the first major human migrations out of Africa. Population movements in the millennia following this initial settlement are thought to have greatly influenced the genetic makeup of current inhabitants, yet the extent attributed to different events is not clear. Recent studies suggest that south-to-north gene flow largely influenced present-day patterns of genetic variation in Southeast Asian populations and that late Pleistocene and early Holocene migrations from Southeast Asia are responsible for a substantial proportion of ISEA ancestry. Archaeological and linguistic evidence suggests that the ancestors of present-day inhabitants came mainly from north-to-south migrations from Taiwan and throughout ISEA approximately 4,000 years ago. We report a large-scale genetic analysis of human variation in the Iban population from the Malaysian state of Sarawak in northwestern Borneo, located in the center of ISEA. Genome-wide single-nucleotide polymorphism (SNP) markers analyzed here suggest that the Iban exhibit greatest genetic similarity to Indonesian and mainland Southeast Asian populations. The most common non-recombining Y (NRY) and mitochondrial (mt) DNA haplogroups present in the Iban are associated with populations of Southeast Asia. We conclude that migrations from Southeast Asia made a large contribution to Iban ancestry, although evidence of potential gene flow from Taiwan is also seen in uniparentally inherited marker data

    Metatranscriptomics and Pyrosequencing Facilitate Discovery of Potential Viral Natural Enemies of the Invasive Caribbean Crazy Ant, Nylanderia pubens

    Get PDF
    BACKGROUND: Nylanderia pubens (Forel) is an invasive ant species that in recent years has developed into a serious nuisance problem in the Caribbean and United States. A rapidly expanding range, explosive localized population growth, and control difficulties have elevated this ant to pest status. Professional entomologists and the pest control industry in the United States are urgently trying to understand its biology and develop effective control methods. Currently, no known biological-based control agents are available for use in controlling N. pubens. METHODOLOGY AND PRINCIPAL FINDINGS: Metagenomics and pyrosequencing techniques were employed to examine the transcriptome of field-collected N. pubens colonies in an effort to identify virus infections with potential to serve as control agents against this pest ant. Pyrosequencing (454-platform) of a non-normalized N. pubens expression library generated 1,306,177 raw sequence reads comprising 450 Mbp. Assembly resulted in generation of 59,017 non-redundant sequences, including 27,348 contigs and 31,669 singlets. BLAST analysis of these non-redundant sequences identified 51 of potential viral origin. Additional analyses winnowed this list of potential viruses to three that appear to replicate in N. pubens. CONCLUSIONS: Pyrosequencing the transcriptome of field-collected samples of N. pubens has identified at least three sequences that are likely of viral origin and, in which, N. pubens serves as host. In addition, the N. pubens transcriptome provides a genetic resource for the scientific community which is especially important at this early stage of developing a knowledgebase for this new pest

    Expression of Bmi-1 is a prognostic marker in bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The molecular mechanisms of the development and progression of bladder cancer are poorly understood. The objective of this study was to analyze the expression of Bmi-1 protein and its clinical significance in human bladder cancer.</p> <p>Methods</p> <p>We examined the expression of Bmi-1 mRNA and Bmi-1 protein by RT-PCR and Western blot, respectively in 14 paired bladder cancers and the adjacent normal tissues. The expression of Bmi-1 protein in 137 specimens of bladder cancer and 30 specimens of adjacent normal bladder tissue was determined by immunohistochemistry. Statistical analyses were applied to test the relationship between expression of Bmi-1, and clinicopathologic features and prognosis.</p> <p>Results</p> <p>Expression of Bmi-1 mRNA and protein was higher in bladder cancers than in the adjacent normal tissues in 14 paired samples (<it>P </it>< 0.01). By immunohistochemical examination, five of 30 adjacent normal bladder specimens (16.7%) versus 75 of 137 bladder cancers (54.3%) showed Bmi-1 protein expression (<it>P </it>< 0.05). Bmi-1 protein expression was intense in 20.6%, 54.3%, and 78.8% of tumors of histopathological stages G1, G2, and G3, respectively (<it>P </it>< 0.05). Expression of Bmi-1 protein was greater in invasive bladder cancers than in superficial bladder cancers (81.5% versus 32.5%, <it>P </it>< 0.05). In invasive bladder cancers, the expression of Bmi-1 protein in progression-free cancers was similar to that of cancers that have progressed (80.0% versus 82.4%, <it>P </it>> 0.5). In superficial bladder cancers, the expression of Bmi-1 protein in recurrent cases was higher than in recurrence-free cases (62.5% versus 13.7%, <it>P </it>< 0.05). Bmi-1 expression was positively correlated with tumor classification and TNM stage (<it>P </it>< 0.05), but not with tumor number (<it>P </it>> 0.05). Five-year survival in the group with higher Bmi-1 expression was 50.8%, while it was 78.5% in the group with lower Bmi-1 expression (<it>P </it>< 0.05). Patients with higher Bmi-1 expression had shorter survival time, whereas patients with lower Bmi-1 expression had longer survival time (<it>P </it>< 0.05).</p> <p>Conclusion</p> <p>Expression of Bmi-1 was greater in bladder cancers than in the adjacent normal tissues. The examination of Bmi-1 protein expression is potentially valuable in prognostic evaluation of bladder cancer.</p
    • …
    corecore