5 research outputs found

    A whey protein-based multi-ingredient nutritional supplement stimulates gains in lean body mass and strength in healthy older men: A randomized controlled trial

    Get PDF
    Protein and other compounds can exert anabolic effects on skeletal muscle, particularly in conjunction with exercise. The objective of this study was to evaluate the efficacy of twice daily consumption of a protein-based, multi-ingredient nutritional supplement to increase strength and lean mass independent of, and in combination with, exercise in healthy older men. Forty-nine healthy older men (age: 73 ± 1 years [mean ± SEM]; BMI: 28.5 ± 1.5 kg/m2) were randomly allocated to 20 weeks of twice daily consumption of either a nutritional supplement (SUPP; n = 25; 30 g whey protein, 2.5 g creatine, 500 IU vitamin D, 400 mg calcium, and 1500 mg n-3 PUFA with 700 mg as eicosapentanoic acid and 445 mg as docosahexanoic acid); or a control (n = 24; CON; 22 g of maltodextrin). The study had two phases. Phase 1 was 6 weeks of SUPP or CON alone. Phase 2 was a 12 week continuation of the SUPP/CON but in combination with exercise: SUPP + EX or CON + EX. Isotonic strength (one repetition maximum [1RM]) and lean body mass (LBM) were the primary outcomes. In Phase 1 only the SUPP group gained strength (Σ1RM, SUPP: +14 ± 4 kg, CON: +3 ± 2 kg, P < 0.001) and lean mass (LBM, +1.2 ± 0.3 kg, CON: -0.1 ± 0.2 kg, P < 0.001). Although both groups gained strength during Phase 2, upon completion of the study upper body strength was greater in the SUPP group compared to the CON group (Σ upper body 1RM: 119 ± 4 vs. 109 ± 5 kg, P = 0.039). We conclude that twice daily consumption of a multi-ingredient nutritional supplement increased muscle strength and lean mass in older men. Increases in strength were enhanced further with exercise training

    Recent developments in chemistry, coordination, structure and biological aspects of 1-(acyl/aroyl)-3-(substituted) thioureas

    No full text
    1-(Acyl/aroyl)-3-(substituted)thioureas are privileged architectures that have received remarkable attention of researchers in view of their variable topological aspects, binding modes and broad spectrum promising pharmacological properties. Reactivity of acyl thiourea derivatives has presented various organic transformations into other demanding scaffolds and this is an attractive strategy for synthetic chemists to access heterocyclic cores. Multiple binding sites make them flexible ligands for complexation with transition metals thus occupying a distinct position in coordination chemistry. 1-(Acyl/aroyl)-3-(substituted)thioureas have also emerged as attractive candidates in various fields such as ion sensors, corrosion inhibitors, molecular electronics, in metal extraction and in pharmaceuticals. The medicinal chemistry of this organo-sulfur framework and the derived metal complexes has witnessed fantastic progress in the current era. In continuation of our efforts to compile data on the structural aspects and numerous applications of 1-(acyl/aroyl)-3-(substituted)thiourea analogs, continuous advances have prompted us to present an overview of the last 2 years literature on this exciting family of compounds through this review article.Fil: Saeed, Aamer. Quaid-i-Azam University; PakistánFil: Qamar, Rabia. Quaid-i-Azam University; PakistánFil: Fattah, Tanzeela Abdul. Quaid-i-Azam University; PakistánFil: Flörke, Ulrich. Universität Paderborn; AlemaniaFil: Erben, Mauricio Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Química Inorgánica "Dr. Pedro J. Aymonino". Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Química Inorgánica "Dr. Pedro J. Aymonino"; Argentin

    Recent developments in chemistry, coordination, structure and biological aspects of 1-(acyl/aroyl)-3-(substituted) thioureas

    No full text
    corecore