481 research outputs found

    Sub-Toxic Human Amylin Fragment Concentrations Promote the Survival and Proliferation of SH-SY5Y Cells via the Release of VEGF and HspB5 from Endothelial RBE4 Cells

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Human amylin is a 37-residue peptide hormone (hA1-37) secreted by β-cells of the pancreas and, along with insulin, is directly associated with type 2 diabetes mellitus (T2DM). Amyloid deposits within the islets of the pancreas represent a hallmark of T2DM. Additionally, amylin aggregates have been found in blood vessels and/or brain of patients with Alzheimer’s disease, alone or co-deposited with β-amyloid. The purpose of this study was to investigate the neuroprotective potential of human amylin in the context of endothelial-neuronal “cross-talk”. We initially performed dose-response experiments to examine cellular toxicity (quantified by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay) of different hA17–29 concentrations in endothelial cells (RBE4). In the culture medium of these cells, we also measured heat shock protein B5 (HspB5) levels by ELISA, finding that even a sub-toxic concentration of hA17–29 (3 µM) produced an increase of HspB5. Using a cell medium of untreated and RBE4 challenged for 48 h with a sub-toxic concentration of hA17–29, we determined the potential beneficial effect of their addition to the medium of neuroblastoma SH-SY5Y cells. These cells were subsequently incubated for 48 h with a toxic concentration of hA17–29 (20 µM). We found a complete inhibition of hA17–29 toxicity, potentially related to the presence in the conditioned medium not only of HspB5, but also of vascular endothelial growth factor (VEGF). Pre-treating SH-SY5Y cells with the anti-Flk1 antibody, blocking the VEGF receptor 2 (VEGFR2), significantly decreased the protective effects of the conditioned RBE4 medium. These data, obtained by indirectly measuring VEGF activity, were strongly corroborated by the direct measurement of VEGF levels in conditioned RBE4 media as detected by ELISA. Altogether, these findings highlighted a novel role of sub-toxic concentrations of human amylin in promoting the secretion of proteic factors by endothelial cells (HspB5 and VEGF) that support the survival and proliferation of neuron-like cells.National Science Foundation (CHE-1411993)NIH COBRE P20GM103638American Heart Association-Midwest Affiliate Postdoctoral Research Fellowship (NFP0075515)Neuropsychopharmacology Research Program 2017 (RC-06-05

    The interaction between systemic inflammation and psychosocial stress in the association with cardiac troponin elevation: A new approach to risk assessment and disease prevention.

    Get PDF
    We have previously shown that there is a complex and dynamic biological interaction between acute mental stress and acute release of inflammatory factors into the blood stream in relation to heart disease. We now hypothesize that the presence of chronic psychosocial stress may modify the weight of single test results for inflammation as a predictor of heart disease. Using a cross-sectional design, 500 participants free from heart disease drawn from the Whitehall II study in UK in 2006-2008 were tested for plasma fibrinogen as an inflammatory factor, financial strain as a marker of chronic psychosocial stress, coronary calcification measured using computed tomography, and for plasma high-sensitivity cardiac troponin T (HS-CTnT) as a marker of cardiac risk. Fibrinogen concentration levels above the average were associated with a 5-fold increase in the odds of HS-CTnT positivity only among individuals with financial strain (N=208, OR=4.73, 95%CI=1.67 to 13.40, P=0.003). Fibrinogen was in fact not associated with HS-CTnT positivity in people without financial strain despite the larger size of that subsample (n=292, OR=0.84, 95%CI=0.42 to 1.67, P=0.622). A test for interaction on the full sample (N=500) showed a P value of 0.010 after adjusting for a range of demographics, health behaviours, traditional cardiovascular risk factors, psychosocial stressors, inflammatory cytokines, and coronary calcification. In conclusion, elevated fibrinogen seems to be cardio-toxic only when is combined with financial strain. Chronic psychosocial stress may modify the meaning that we should give to single test results for inflammation. Further research is needed to confirm our results

    Lung Surfactant Decreases Biochemical Alterations and Oxidative Stress Induced by a Sub-Toxic Concentration of Carbon Nanoparticles in Alveolar Epithelial and Microglial Cells

    Get PDF
    Carbon-based nanomaterials are nowadays attracting lots of attention, in particular in the biomedical field, where they find a wide spectrum of applications, including, just to name a few, the drug delivery to specific tumor cells and the improvement of non-invasive imaging methods. Nanoparticles inhaled during breathing accumulate in the lung alveoli, where they interact and are covered with lung surfactants. We recently demonstrated that an apparently non-toxic concentration of engineered carbon nanodiamonds (ECNs) is able to induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells. Therefore, the complete understanding of their “real” biosafety, along with their possible combination with other molecules mimicking the in vivo milieu, possibly allowing the modulation of their side effects becomes of utmost importance. Based on the above, the focus of the present work was to investigate whether the cellular alterations induced by an apparently non-toxic concentration of ECNs could be counteracted by their incorporation into a synthetic lung surfactant (DPPC:POPG in 7:3 molar ratio). By using two different cell lines (alveolar (A549) and microglial (BV-2)), we were able to show that the presence of lung surfactant decreased the production of ECNs-induced nitric oxide, total reactive oxygen species, and malondialdehyde, as well as counteracted reduced glutathione depletion (A549 cells only), ameliorated cell energy status (ATP and total pool of nicotinic coenzymes), and improved mitochondrial phosphorylating capacity. Overall, our results on alveolar basal epithelial and microglial cell lines clearly depict the benefits coming from the incorporation of carbon nanoparticles into a lung surfactant (mimicking its in vivo lipid composition), creating the basis for the investigation of this combination in vivo

    AFM macro-probes to investigate whole 3D cardiac spheroids

    Get PDF
    In its many applications, the Atomic Force Microscope (AFM) is a promising tool in cardiac mechanobiology because it can unravel the viscoelastic and mechano-dynamic properties of individual cardiomyocytes. However, the biophysical investigation of more accurate 3D models is hampered by commercial probes, which typically operate at the cell sub-compartmental resolution. We have previously shown how flat macro-probes can overcome these limitations by extending the AFM mechanical measurements to multicellular aggregates. Such macro-probes are fabricated by standard micromachining and carry a flat polymeric wedge to offset the AFM mounting tilt. Therefore, the AFM is upgraded to a micro-parallel plate rheometer with unmatched force range and sensitivity. In this article, we show how these macro-probes can be applied to reveal the global rheology of primary cardiomyocytes spheroids, by performing stress-relaxation tests. More importantly, we demonstrate that these macro-probes can be used as passive sensors capable of monitoring the spheroid beating force and beating pattern, and to perform a “micro-CPR” on the spheroid itself

    Proteasome inhibitors as a possible therapy for SARS-CoV-2

    Get PDF
    The COVID-19 global pandemic is caused by SARS-CoV-2, and represents an urgent medical and social issue. Unfortunately, there is still not a single proven effective drug available, and therefore, current therapeutic guidelines recommend supportive care including oxygen administration and treatment with antibiotics. Recently, patients have been also treated with off-label therapies which comprise antiretrovirals, anti-inflammatory compounds, antiparasitic agents and plasma from convalescent patients, all with controversial results. The ubiquitin–proteasome system (UPS) is important for the maintenance of cellular homeostasis, and plays a pivotal role in viral replication processes. In this review, we discuss several aspects of the UPS and the effects of its inhibition with particular regard to the life cycle of the coronaviruses (CoVs). In fact, proteasome inhibition by various chemical compounds, such as MG132, epoxomycin and bortezomib, may reduce the virus entry into the eucariotic cell, the synthesis of RNA, and the subsequent protein expression necessary for CoVs. Importantly, since UPS inhibitors reduce the cytokine storm associated with various inflammatory conditions, it is reasonable to assume that they might be repurposed for SARS-CoV-2, thus providing an additional tool to counteract both virus replication as well as its most deleterious consequences triggered by abnormal immunological response

    Modulation of Pro-Oxidant and Pro-Inflammatory Activities of M1 Macrophages by the Natural Dipeptide Carnosine

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Carnosine is a natural endogenous dipeptide widely distributed in mammalian tissues, existing at particularly high concentrations in the muscles and brain and possesses well-characterized antioxidant and anti-inflammatory activities. In an in vitro model of macrophage activation, induced by lipopolysaccharide + interferon-gamma (LPS + IFN-γ), we here report the ability of carnosine to modulate pro-oxidant and pro-inflammatory activities of macrophages, representing the primary cell type that is activated as a part of the immune response. An ample set of parameters aimed to evaluate cytotoxicity (MTT assay), energy metabolism (HPLC), gene expressions (high-throughput real-time PCR (qRT-PCR)), protein expressions (western blot) and nitric oxide production (qRT-PCR and HPLC), was used to assess the effects of carnosine on activated macrophages challenged with a non cytotoxic LPS (100 ng/mL) + IFN-γ (600 U/mL) concentration. In our experimental model, main carnosine beneficial effects were: (1) the modulation of nitric oxide production and metabolism; (2) the amelioration of the macrophage energy state; (3) the decrease of the expressions of pro-oxidant enzymes (Nox-2, Cox-2) and of the lipid peroxidation product malondialdehyde; (4) the restoration and/or increase of the expressions of antioxidant enzymes (Gpx1, SOD-2 and Cat); (5) the increase of the transforming growth factor-β1 (TGF-β1) and the down-regulation of the expressions of interleukins 1β and 6 (IL-1β and IL-6) and 6) the increase of the expressions of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1). According to these results carnosine is worth being tested in the treatment of diseases characterized by elevated levels of oxidative stress and inflammation (atherosclerosis, cancer, depression, metabolic syndrome, and neurodegenerative diseases)

    MDA, oxypurines, and nucleosides relate to reperfusion in short-term incomplete cerebral ischemia in the rat

    Get PDF
    Short-term incomplete cerebral ischemia (5 min) was induced in the rat by the bilateral clamping of the common carotid arteries. Reperfusion was obtained by removing carotid clamping and was carried out for the following 10 min. Animals were sacrificed either at the end of ischemia or reperfusion. Controls were represented by a group of sham-operated rats. Peripheral venous blood samples were withdrawn from the femoral vein from rats subjected to cerebral reperfusion 5 min before ischemia, at the end of ischemia, and 10 min after reperfusion. Neutralized perchloric acid extracts of brain tissue were analyzed by a highly sensitive high-performance liquid chromatography (HPLC) method for the direct determination of malondialdehyde, oxypurines, nucleosides, nicotinic coenzymes, and high-energy phosphates. In addition, plasma concentrations of malondialdehyde, hypoxanthine, xanthine, inosine, uric acid, and adenosine were determined by the same HPLC technique. Incomplete cerebral ischemia induced the appearance of a significant amount (8.05 nmol/g w.w.; SD = 2.82) of cerebral malondialdehyde (which was undetectable in control animals) and a decrease of ascorbic acid. A further 6.6-fold increase of malondialdehyde (53.30 nmol/g w.w.; SD = 17.77) and a 18.5% decrease of ascorbic acid occurred after 10 min of reperfusion. Plasma malondialdehyde, which was present in minimal amount before ischemia (0.050 mumol/L; SD = 0.015), significantly increased after 5 min of ischemia (0.277 mumol/L; SD = 0.056) and was strikingly augmented after 10 min of reperfusion (0.682 mumol/L; SD = 0.094). A similar trend was observed for xanthine, uric acid, inosine, and adenosine, while hypoxanthine reached its maximal concentration after 5 min of incomplete ischemia, being significantly decreased after reperfusion. From the data obtained, it can be concluded that tissue concentrations of malondialdehyde and ascorbic acid, and plasma levels of malondialdehyde, oxypurines, and nucleosides, reflect both the oxygen radical-mediated tissue injury and the depression of energy metabolism, thus representing early biochemical markers of short-term incomplete brain ischemia and reperfusion in the rat. In particular, these results suggest the possibility of using the variation of malondialdehyde, oxypurines, and nucleosides in peripheral blood as a potential biochemical indicator of reperfusion damage occurring to postischemic tissues

    Carnosine Decreases PMA-Induced Oxidative Stress and Inflammation in Murine Macrophages

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine. This naturally occurring molecule is present at high concentrations in several mammalian excitable tissues such as muscles and brain, while it can be found at low concentrations in a few invertebrates. Carnosine has been shown to be involved in different cellular defense mechanisms including the inhibition of protein cross-linking, reactive oxygen and nitrogen species detoxification as well as the counteraction of inflammation. As a part of the immune response, macrophages are the primary cell type that is activated. These cells play a crucial role in many diseases associated with oxidative stress and inflammation, including atherosclerosis, diabetes, and neurodegenerative diseases. In the present study, carnosine was first tested for its ability to counteract oxidative stress. In our experimental model, represented by RAW 264.7 macrophages challenged with phorbol 12-myristate 13-acetate (PMA) and superoxide dismutase (SOD) inhibitors, carnosine was able to decrease the intracellular concentration of superoxide anions (O2−•) as well as the expression of Nox1 and Nox2 enzyme genes. This carnosine antioxidant activity was accompanied by the attenuation of the PMA-induced Akt phosphorylation, the down-regulation of TNF-α and IL-6 mRNAs, and the up-regulation of the expression of the anti-inflammatory mediators IL-4, IL-10, and TGF-β1. Additionally, when carnosine was used at the highest dose (20 mM), there was a generalized amelioration of the macrophage energy state, evaluated through the increase both in the total nucleoside triphosphate concentrations and the sum of the pool of intracellular nicotinic coenzymes. Finally, carnosine was able to decrease the oxidized (NADP+)/reduced (NADPH) ratio of nicotinamide adenine dinucleotide phosphate in a concentration dependent manner, indicating a strong inhibitory effect of this molecule towards the main source of reactive oxygen species in macrophages. Our data suggest a multimodal mechanism of action of carnosine underlying its beneficial effects on macrophage cells under oxidative stress and inflammation conditions

    Nanomechanical Characterization of Ovarian Cancer Cell Lines as a Marker of Response to 2c Treatment

    Get PDF
    Epithelial ovarian cancers (EOCs) are a heterogeneous group of tumors with different molecular and clinical features. In past decades, few improvements have been achieved in terms of EOC management and treatment efficacy, such that the 5-year survival rate of patients remained almost unchanged. A better characterization of EOCs’ heterogeneity is needed to identify cancer vulnerabilities, stratify patients and adopt proper therapies. The mechanical features of malignant cells are emerging as new biomarkers of cancer invasiveness and drug resistance that can further improve our knowledge of EOC biology and allow the identification of new molecular targets. In this study, we determined the inter and intra-mechanical heterogeneity of eight ovarian cancer cell lines and their association with tumor invasiveness and resistance to an anti-tumoral drug with cytoskeleton depolymerization activity (2c)

    L-DOPA preloading increases the uptake of borophenylalanine in C6 glioma rat model: a new strategy to improve BNCT efficacy.

    Get PDF
    Purpose: Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on 10B(n,a)7Li reaction, for the treatment of malignant gliomas. One of the main limitations for BNCT effectiveness is the insufficient intake of 10B nuclei in the tumor cells. This work was aimed at investigating the use of L-DOPA as a putative enhancer for 10B-drug 4-dihydroxy-borylphenylalanine (BPA) uptake in the C6-glioma model. The investigation was first per- formed in vitro and then extended to the animal model. Methods and Materials: BPA accumulation in C6-glioma cells was assessed using radiowave dielectric spectros- copy, with and without L-DOPA preloading. Two L-DOPA incubation times (2 and 4 hours) were investigated, and the corresponding effects on BPA accumulation were quantified. C6-glioma cells were also implanted in the brain of 32 rats, and tumor growth was monitored by magnetic resonance imaging. Rats were assigned to two experimental branches: (1) BPA administration; (2) BPA administration after pretreatment with L-DOPA. All an- imals were sacrificed, and assessments of BPA concentrations in tumor tissue, normal brain, and blood samples were performed using high-performance liquid chromatography. Results: L-DOPA preloading induced a massive increase of BPA concentration in C6-glioma cells only after a 4-hour incubation. In the animal model, L-DOPA pretreatment produced a significantly higher accumulation of BPA in tumor tissue but not in normal brain and blood samples. Conclusions: This study suggests the potential use of L-DOPA as enhancer for BPA accumulation in malig- nant gliomas eligible for BNCT. L-DOPA preloading effect is discussed in terms of membrane transport mechanisms
    • …
    corecore