19 research outputs found
On Yukawa quasi-unification with mu<0
Although recent data on the muon anomalous magnetic moment strongly disfavor
the constrained minimal supersymmetric standard model with mu<0, they cannot
exclude it because of theoretical ambiguities. We consider this model
supplemented by a Yukawa quasi-unification condition which allows an acceptable
b-quark mass. We find that the cosmological upper bound on the lightest
sparticle relic abundance is incompatible with the data on the branching ratio
of b-->s gamma, which is evaluated by including all the next-to-leading order
corrections. Thus, this scheme is not viable.Comment: 4 pages including 3 figures, Revte
Discrete symmetries, invisible axion and lepton number symmetry in an economic 3-3-1 model
We show that Peccei-Quinn and lepton number symmetries can be a natural
outcome in a 3-3-1 model with right-handed neutrinos after imposing a Z_11 x
Z_2 symmetry. This symmetry is suitably accommodated in this model when we
augmented its spectrum by including merely one singlet scalar field. We work
out the breaking of the Peccei-Quinn symmetry, yielding the axion, and study
the phenomenological consequences. The main result of this work is that the
solution to the strong CP problem can be implemented in a natural way, implying
an invisible axion phenomenologically unconstrained, free of domain wall
formation and constituting a good candidate for the cold dark matter.Comment: 17 pages, Revtex
SU(3)c⊗SU(3)L⊗U(1)x as an SU(6)⊗U(1)x subgroup
ABSTRACT: An extension of the standard model to the local gauge group SU(3) c ^ SU(3)L ^ U(1)X as a family independent model is presented. The mass scales, the gauge boson masses, and the masses for the spin 1/2 particles in the model are studied. The mass differences between the up and down quark sectors, between the quarks and leptons, and between the charged and neutral leptons in one family are analyzed. The existence of two Dirac neutrinos for each family, one light and one very heavy, is predicted. By using experimental results from CERN LEP, SLC and atomic parity violation we constrain the mixing angle between the two neutral currents and the mass of the additional neutral gauge boson to be 20.00015<sin u<0 and 1.5 TeV<MZ2 at 95% C.L
Gauge and Scheme Dependence of Mixing Matrix Renormalization
We revisit the issue of mixing matrix renormalization in theories that
include Dirac or Majorana fermions. We show how a gauge-variant on-shell
renormalized mixing matrix can be related to a manifestly gauge-independent one
within a generalized scheme of renormalization. This
scheme-dependent relation is a consequence of the fact that in any scheme of
renormalization, the gauge-dependent part of the mixing-matrix counterterm is
ultra-violet safe and has a pure dispersive form. Employing the unitarity
properties of the theory, we can successfully utilize the afore-mentioned
scheme-dependent relation to preserve basic global or local symmetries of the
bare Lagrangian through the entire process of renormalization. As an immediate
application of our study, we derive the gauge-independent renormalization-group
equations of mixing matrices in a minimal extension of the Standard Model with
isosinglet neutrinos.Comment: 31 pages, LaTeX, uses axodraw.st