54 research outputs found

    Feasibility Study of Pumping Cycle Kite Power System Implication in Scotland UK

    Get PDF
    To meet the worldwide requirements of carbon emission reduction, the European Council set a target for 15% of final energy consumption in the UK to come from renewable energy by 2020. In the UK, the Climate Change Act (2008) set a target for the reduction of 80% of carbon emissions by 2050. The biggest renewable energy sources in the UK are bioenergy, wind, solar and hydro. The UK is located in a windy area and is one of the top locations in the world for wind power, often considered to be the best in Europe. Since the 1980’s, the number of wind farms has increased greatly. Wind turbines extract wind energy from 100 metres above the ground. Airborne Wind Energy (AWE) systems enable the extraction of more energy from the wind at elevated altitudes beyond 150 meters using a technique termed pumping cycle kite power system. Scotland is the most suitable location for the implementation of AWE systems in the UK. In this work, the annual energy production of such a pumping cycle kite power system in Scotland was analysed using Luchsinger’s analytical models. The annual energy production was found to be over 3.4MWh/m2 in all five locations in Scotland

    Viability of Airborne Wind Energy in the United Kingdom

    Get PDF
    To meet the worldwide requirements of carbon emission reduction, the European Council has set the UK a 15% energy target to come from renewable energy by 2020. The biggest renewable energy sources in the UK are bioenergy, wind, solar and hydro. The UK is located in prime geography, considered to be the best in Europe, for harvesting and over the last three decades, the number of wind farms has increased greatly. However, the interaction of wind speed and structural strength have limited the height of platform-based wind turbines to a maximum height of around 100 m. Airborne Wind Energy (AWE) systems enable the extraction of more energy from the wind at elevated altitudes beyond 150 meters using a device termed a kite. A method is required to determine suitable locations for AWE system implementation. In this work, a regional feasibility study is conducted to establish an ideal suitable location to implement the AWE system. Extensive work has been carried out to assess the electricity costs and energy savings, area availability as well as regional airborne wind energy power densities at different regions within the UK. A standardised method has been developed to assess the viability of AWE in various geographical locations. It was found that Scotland was the most suitable location for the implementation of an AWE systems due to the high wind power density in this region and existing high costs of electricity thus greater potentials for energy cost savings. This is the pre-print version of an article printed in the Journal of Thermal Science and Engineering Applications, published by the American Society of Mechanical Engineers. The full published version is available online at: http://thermalscienceapplication.asmedigitalcollection.asme.org/journal.asp

    Bullying: An ecological approach to intervention in schools

    Get PDF
    Bullying is a major concern in education worldwide, particularly in countries such as New Zealand that are reported to have high rates of bullying in schools. In this article it is proposed that, in order to effectively prevent or substantially reduce bullying in schools, a systemic approach needs to be adopted, with interventions organized at various levels. An ecological model for bullying prevention is presented that suggests strategies and interventions at the levels of teachers, schools, communities, and society. Examples of interventions that have been found in the literature to have evidence supporting their effectiveness have been outlined at each of these levels. Guidelines are presented for schools adopting such an ecological model for addressing bullying and for bringing about the changes needed to implement it successfully

    Acoustic Overexposure Increases the Expression of VGLUT-2 Mediated Projections from the Lateral Vestibular Nucleus to the Dorsal Cochlear Nucleus

    Get PDF
    The dorsal cochlear nucleus (DCN) is a first relay of the central auditory system as well as a site for integration of multimodal information. Vesicular glutamate transporters VGLUT-1 and VGLUT-2 selectively package glutamate into synaptic vesicles and are found to have different patterns of organization in the DCN. Whereas auditory nerve fibers predominantly co-label with VGLUT-1, somatosensory inputs predominantly co-label with VGLUT-2. Here, we used retrograde and anterograde transport of fluorescent conjugated dextran amine (DA) to demonstrate that the lateral vestibular nucleus (LVN) exhibits ipsilateral projections to both fusiform and deep layers of the rat DCN. Stimulating the LVN induced glutamatergic synaptic currents in fusiform cells and granule cell interneurones. We combined the dextran amine neuronal tracing method with immunohistochemistry and showed that labeled projections from the LVN are co-labeled with VGLUT-2 by contrast to VGLUT-1. Wistar rats were exposed to a loud single tone (15 kHz, 110 dB SPL) for 6 hours. Five days after acoustic overexposure, the level of expression of VGLUT-1 in the DCN was decreased whereas the level of expression of VGLUT-2 in the DCN was increased including terminals originating from the LVN. VGLUT-2 mediated projections from the LVN to the DCN are likely to play a role in the head position in response to sound. Amplification of VGLUT-2 expression after acoustic overexposure could be a compensatory mechanism from vestibular inputs in response to hearing loss and to a decrease of VGLUT-1 expression from auditory nerve fibers

    Comparison of the Yearly Power Generation of a Pumping Cycle Kite Power System and a Traditional Wind Turbine in Aberdeen Scotland UK

    No full text
    In the UK, the Climate Change Act (2008) set a target for reduction of 80% of carbon emissions by 2050. Total power generation in the UK from renewable resources was 110 TWh in 2018. Of this, 56.9 TWh was wind-generated. The UK is located in a windy area and is one of the top locations in the world for wind power, often considered to be the best in Europe. Scotland is the most suitable location for the implementation of Airborne Wind Energy (AWE) systems in the UK. Over the last three decades, the number of wind farms has increased greatly. Wind turbines extract wind energy from 100 m above the ground. AWE systems enable the extraction of more energy from wind at elevated altitudes beyond 150 m. A pumping cycle kite power (shorted as kite) system is the most popular AWE. In this work, the annual power production of a kite system and a turbine system with a 30 kW generator were analysed by applying the annual wind profile in Aberdeen to the performance models of these two systems. The annual power production of the kite system was found to be two times higher than the turbine system

    Inacap Centro para la región del Bio Bio

    No full text
    corecore