38 research outputs found

    Oracles Are Subtle But Not Malicious

    Full text link
    Theoretical computer scientists have been debating the role of oracles since the 1970's. This paper illustrates both that oracles can give us nontrivial insights about the barrier problems in circuit complexity, and that they need not prevent us from trying to solve those problems. First, we give an oracle relative to which PP has linear-sized circuits, by proving a new lower bound for perceptrons and low- degree threshold polynomials. This oracle settles a longstanding open question, and generalizes earlier results due to Beigel and to Buhrman, Fortnow, and Thierauf. More importantly, it implies the first nonrelativizing separation of "traditional" complexity classes, as opposed to interactive proof classes such as MIP and MA-EXP. For Vinodchandran showed, by a nonrelativizing argument, that PP does not have circuits of size n^k for any fixed k. We present an alternative proof of this fact, which shows that PP does not even have quantum circuits of size n^k with quantum advice. To our knowledge, this is the first nontrivial lower bound on quantum circuit size. Second, we study a beautiful algorithm of Bshouty et al. for learning Boolean circuits in ZPP^NP. We show that the NP queries in this algorithm cannot be parallelized by any relativizing technique, by giving an oracle relative to which ZPP^||NP and even BPP^||NP have linear-size circuits. On the other hand, we also show that the NP queries could be parallelized if P=NP. Thus, classes such as ZPP^||NP inhabit a "twilight zone," where we need to distinguish between relativizing and black-box techniques. Our results on this subject have implications for computational learning theory as well as for the circuit minimization problem.Comment: 20 pages, 1 figur

    Tyrolean Complexity Tool: Features and Usage

    Get PDF
    The Tyrolean Complexity Tool, TCT for short, is an open source complexity analyser for term rewrite systems. Our tool TCT features a majority of the known techniques for the automated characterisation of polynomial complexity of rewrite systems and can investigate derivational and runtime complexity, for full and innermost rewriting. This system description outlines features and provides a short introduction to the usage of TCT

    Time-Space Lower Bounds for Simulating Proof Systems with Quantum and Randomized Verifiers

    Get PDF
    A line of work initiated by Fortnow in 1997 has proven model-independent time-space lower bounds for the SAT\mathsf{SAT} problem and related problems within the polynomial-time hierarchy. For example, for the SAT\mathsf{SAT} problem, the state-of-the-art is that the problem cannot be solved by random-access machines in ncn^c time and no(1)n^{o(1)} space simultaneously for c<2cos(π7)1.801c < 2\cos(\frac{\pi}{7}) \approx 1.801. We extend this lower bound approach to the quantum and randomized domains. Combining Grover's algorithm with components from SAT\mathsf{SAT} time-space lower bounds, we show that there are problems verifiable in O(n)O(n) time with quantum Merlin-Arthur protocols that cannot be solved in ncn^c time and no(1)n^{o(1)} space simultaneously for c<3+322.366c < \frac{3+\sqrt{3}}{2} \approx 2.366, a super-quadratic time lower bound. This result and the prior work on SAT\mathsf{SAT} can both be viewed as consequences of a more general formula for time lower bounds against small-space algorithms, whose asymptotics we study in full. We also show lower bounds against randomized algorithms: there are problems verifiable in O(n)O(n) time with (classical) Merlin-Arthur protocols that cannot be solved in ncn^c randomized time and no(1)n^{o(1)} space simultaneously for c<1.465c < 1.465, improving a result of Diehl. For quantum Merlin-Arthur protocols, the lower bound in this setting can be improved to c<1.5c < 1.5.Comment: 38 pages, 5 figures. To appear in ITCS 202

    Otto III at Aachen

    Get PDF

    The GOODSTEP project: General Object-Oriented Database for Software Engineering Processes

    Get PDF
    The goal of the GOODSTEP project is to enhance and improve the functionality of a fully object-oriented database management system to yield a platform suited for applications such as software development environments (SDEs). The baseline of the project is the O2 database management system (DBMS). The O2 DBMS already includes many of the features regulated by SDEs. The project has identified enhancements to O2 in order to make it a real software engineering DBMS. These enhancements are essentially upgrades of the existing O2 functionality, and hence require relatively easy extensions to the O2 system. They have been developed in the early stages of the project and are now exploited and validated by a number of software engineering tools built on top of the enhanced O2 DBMS. To ease tool construction, the GOODSTEP platform encompasses tool generation capabilities which allow for generation of integrated graphical and textual tools from high-level specifications. In addition, the GOODSTEP platform provides a software process toolset which enables modeling, analysis and enaction of software processes and is also built on top of the extended O2 database. The GOODSTEP platform is to be validated using two CASE studies carried out to develop an airline application and a business application
    corecore