326 research outputs found

    ATCA and Spitzer Observations of the Binary Protostellar Systems CG30 and BHR71

    Full text link
    We present interferometric observations with resolution of ~3 arcsecs of the isolated, low-mass protostellar double cores CG30 and BHR71 in the N2H+(1−0)lineandat3mmdustcontinuum,usingtheAustralianTelescopeCompactArray(ATCA).TheresultsarecomplementedbyinfrareddatafromtheSpitzerSpaceTelescope.InCG30,the3mmdustcontinuumimagesresolvetwocompactsourceswithaseparationof 21.7arcsecs( 8700AU).InBHR71,strongdustcontinuumemissionisdetectedatthepositionofthemid−infraredsourceIRS1,whileonlyweakemissionisdetectedfromthesecondarymid−infraredsourceIRS2.Assumingopticallythin3mmdustcontinuumemission,wederivehydrogengasmassesof0.05−−2.1H+(1-0) line and at 3mm dust continuum, using the Australian Telescope Compact Array (ATCA). The results are complemented by infrared data from the Spitzer Space Telescope. In CG30, the 3mm dust continuum images resolve two compact sources with a separation of ~21.7 arcsecs (~8700 AU). In BHR71, strong dust continuum emission is detected at the position of the mid-infrared source IRS1, while only weak emission is detected from the secondary mid-infrared source IRS2. Assuming optically thin 3mm dust continuum emission, we derive hydrogen gas masses of 0.05--2.1 M_\odotforthefoursub−cores.N2H+(1−0)lineemissionisdetectedinbothCG30andBHR71,andisspatiallyassociatedwiththethermaldustcontinuumemission.Wederivethevelocityfieldsandfindsymmetricvelocitygradientsinbothsources.Assumingthatthesegradientsareduetocorerotation,weestimatethespecificangularmomentaandratiosofrotationalenergytogravitationalenergyforallcores.WealsofindthattheN2H+emissionisstronglyaffectedbytheoutflows,bothintermsofentrainmentandmoleculedestruction. for the four sub-cores. N2H+(1-0) line emission is detected in both CG30 and BHR71, and is spatially associated with the thermal dust continuum emission. We derive the velocity fields and find symmetric velocity gradients in both sources. Assuming that these gradients are due to core rotation, we estimate the specific angular momenta and ratios of rotational energy to gravitational energy for all cores. We also find that the N2H+ emission is strongly affected by the outflows, both in terms of entrainment and molecule destruction. Spitzerimagesshowthemid−infraredemissionfromallfoursub−cores.Allfoursourcesappeartodrivetheirownoutflows.BasedontheATCAand images show the mid-infrared emission from all four sub-cores. All four sources appear to drive their own outflows. Based on the ATCA and Spitzer$ observations, we construct spectral energy distributions (SEDs) and derive temperatures and luminosities for all cores. Based on the morphology and velocity structure, we suggest that the sub-cores in CG30 were formed by initial fragmentation of a filamentary prestellar core, while those in BHR71 could originate from rotational fragmentation of a single collapsing protostellar core.Comment: 31 pages, 10 figures, to be published by ApJ in Sep. 200

    OVRO N2H+ Observations of Class 0 Protostars: Constraints on the Formation of Binary Stars

    Full text link
    We present the results of an interferometric study of the N2H+(1--0) emission from nine nearby, isolated, low-mass protostellar cores, using the OVRO millimeter array. The main goal of this study is the kinematic characterization of the cores in terms of rotation, turbulence, and fragmentation. Eight of the nine objects have compact N2H+ cores with FWHM radii of 1200 -- 3500 AU, spatially coinciding with the thermal dust continuum emission. The only more evolved (Class I) object in the sample (CB 188) shows only faint and extended N2H+ emission. The mean N2H+ line width was found to be 0.37 km/s. Estimated virial masses range from 0.3 to 1.2 M_sun. We find that thermal and turbulent energy support are about equally important in these cores, while rotational support is negligible. The measured velocity gradients across the cores range from 6 to 24 km/s/pc. Assuming these gradients are produced by bulk rotation, we find that the specific angular momenta of the observed Class 0 protostellar cores are intermediate between those of dense (prestellar) molecular cloud cores and the orbital angular momenta of wide PMS binary systems. There appears to be no evolution (decrease) of angular momentum from the smallest prestellar cores via protostellar cores to wide PMS binary systems. In the context that most protostellar cores are assumed to fragment and form binary stars, this means that most of the angular momentum contained in the collapse region is transformed into orbital angular momentum of the resulting stellar binary systems.Comment: 35 pages, 9 figures (one in color), 6 tables. Accepted by ApJ (to appear in Nov. 2007

    Synthetic observations of first hydrostatic cores in collapsing low-mass dense cores II. Simulated ALMA dust emission maps

    Full text link
    First hydrostatic cores are predicted by theories of star formation, but their existence has never been demonstrated convincingly by (sub)millimeter observations. Furthermore, the multiplicity at the early phases of the star formation process is poorly constrained. The purpose of this paper is twofold. First, we seek to provide predictions of ALMA dust continuum emission maps from early Class 0 objects. Second, we show to what extent ALMA will be able to probe the fragmentation scale in these objects. Following our previous paper (Commer\c{c}on et al. 2012, hereafter paper I), we post-process three state-of-the-art radiation-magneto-hydrodynamic 3D adaptive mesh refinement calculations to compute the emanating dust emission maps. We then produce synthetic ALMA observations of the dust thermal continuum from first hydrostatic cores. We present the first synthetic ALMA observations of dust continuum emission from first hydrostatic cores. We analyze the results given by the different bands and configurations and we discuss for which combinations of the two the first hydrostatic cores would most likely be observed. We also show that observing dust continuum emission with ALMA will help in identifying the physical processes occurring within collapsing dense cores. If the magnetic field is playing a role, the emission pattern will show evidence of a pseudo-disk and even of a magnetically driven outflow, which pure hydrodynamical calculations cannot reproduce. The capabilities of ALMA will enable us to make significant progress towards understanding fragmentation at the early Class 0 stage and discovering first hydrostatic cores.Comment: 12 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    Dust-temperature of an isolated star-forming cloud: Herschel observations of the Bok globule CB244

    Full text link
    We present Herschel observations of the isolated, low-mass star-forming Bok globule CB244. It contains two cold sources, a low-mass Class 0 protostar and a starless core, which is likely to be prestellar in nature, separated by 90 arcsec (~ 18000 AU). The Herschel data sample the peak of the Planck spectrum for these sources, and are therefore ideal for dust-temperature and column density modeling. With these data and a near-IR extinction map, the MIPS 70 micron mosaic, the SCUBA 850 micron map, and the IRAM 1.3 mm map, we model the dust-temperature and column density of CB244 and present the first measured dust-temperature map of an entire star-forming molecular cloud. We find that the column-averaged dust-temperature near the protostar is ~ 17.7 K, while for the starless core it is ~ 10.6K, and that the effect of external heating causes the cloud dust-temperature to rise to ~ 17 K where the hydrogen column density drops below 10^21 cm^-2. The total hydrogen mass of CB244 (assuming a distance of 200 pc) is 15 +/- 5 M_sun. The mass of the protostellar core is 1.6 +/- 0.1 M_sun and the mass of the starless core is 5 +/- 2 M_sun, indicating that ~ 45% of the mass in the globule is participating in the star-formation process.Comment: Accepted for A&A Herschel Special Issue; 5 pages, 2 figure

    Magnetic field evolution in Bok globules

    Full text link
    Using the Submillimeter Common-User Bolometer Array (SCUBA) at the James Clerk Maxwell Telescope (JCMT), we obtained submillimeter polarization maps of the Bok globules B335, CB230, and CB244 at 850micron. We find strongly aligned polarization vectors in the case of B335 and CB230, indicating a strong coupling of the magnetic field to the dust grains. Based on the distribution of the orientation and strength of the linear polarization we derive the magnetic field strengths in the envelopes of the globules. In agreement with previous submillimeter polarization measurements of Bok globules we find polarization degrees of several percent decreasing towards the centers of the cores. Furthermore, we compare the magnetic field topology with the spatial structure of the globules, in particular with the orientation of the outflows and the orientation of the nonspherical globule cores. In case of the globules B335 and CB230, the outflows are oriented almost perpendicular to the symmetry axis of the globule cores. The magnetic field, however, is aligned with the symmetry axis of the prolate cores in the case of the Bok globules B335 and CB230, while it is slightly aligned with the outflow axis in the case of the Bok globules CB26 and CB54. We discuss the possibility that the different orientations of the magnetic field relative to the outflow directions reflect different evolutionary stages of the single globules. The complete version of this article (containing all figures) can be downloaded from http://spider.ipac.caltech.edu/staff/swolf/homepage/public/preprints/mfe.ps.gzComment: ApJ, in pres

    Shapes of Molecular Cloud Cores and the Filamentary Mode of Star Formation

    Full text link
    Using recent dust continuum data, we generate the intrinsic ellipticity distribution of dense, starless molecular cloud cores. Under the hypothesis that the cores are all either oblate or prolate randomly-oriented spheroids, we show that a satisfactory fit to observations can be obtained with a gaussian prolate distribution having a mean intrinsic axis ratio of 0.54. Further, we show that correlations exist between the apparent axis ratio and both the peak intensity and total flux density of emission from the cores, the sign of which again favours the prolate hypothesis. The latter result shows that the mass of a given core depends on its intrinsic ellipticity. Monte Carlo simulations are performed to find the best-fit power law of this dependence. Finally, we show how these results are consistent with an evolutionary scenario leading from filamentary parent clouds to increasingly massive, condensed, and roughly spherical embedded cores.Comment: 16 pages, incl. 11 Postscript figures. Accepted by Ap

    Pebbles in an Embedded Protostellar Disk: The Case of CB26

    Full text link
    Planetary cores are thought to form in proto-planetary disks via the growth of dusty solid material. However, it is unclear how early this process begins. We study the physical structure and grain growth in the edge-on disk that surrounds the ~1 Myr old low-mass (~0.55 Msun) protostar embedded in the Bok Globule CB26 to examine how much grain growth has already occurred in the protostellar phase. We combine the SED between 0.9 μ{\mu}m and 6.4 cm with high angular resolution continuum maps at 1.3, 2.9, and 8.1 mm, and use the radiative transfer code RADMC-3D to conduct a detailed modelling of the dust emission from the disk and envelope of CB 26. We infer inner and outer disk radii of around 16 au and 172±\pm22 au, respectively. The total gas mass in the disk is ~0.076 Msun, which amounts to ~14% of the mass of the central star. The inner disk contains a compact free-free emission region, which could be related to either a jet or a photoevaporation region. The thermal dust emission from the outer disk is optically thin at mm wavelengths, while the emission from the inner disk midplane is moderately optically thick. Our best-fit radiative transfer models indicate that the dust grains in the disk have already grown to pebbles with diameters of the order of 10 cm in size. Residual 8.1 mm emission suggests the presence of even larger particles in the inner disk. For the optically thin mm dust emission from the outer disk, we derive a mean opacity slope of 0.6±\pm0.4, which is consistent with the presence of large dust grains. The presence of cm-sized bodies in the CB 26 disk indicates that solids grow rapidly already during the first million years in a protostellar disk. It is thus possible that Class II disks are already seeded with large particles and may contain even planetesimals.Comment: Accepted for publication in A&A; 17 pages, 14 figure

    Fragmentation and dynamical collapse of the starless high-mass star-forming region IRDC18310-4

    Get PDF
    Aims: We study the fragmentation and dynamical properties of a massive starless gas clump at the onset of high-mass star formation. Methods: Based on Herschel continuum data we identify a massive gas clump that remains far-infrared dark up to 100mum wavelengths. The fragmentation and dynamical properties are investigated by means of Plateau de Bure Interferometer and Nobeyama 45m single-dish spectral line and continuum observations. Results: The massive gas reservoir fragments at spatial scales of ~18000AU in four cores. Comparing the spatial extent of this high-mass region with intermediate- to low-mass starless cores from the literature, we find that linear sizes do not vary significantly over the whole mass regime. However, the high-mass regions squeeze much more gas into these similar volumes and hence have orders of magnitude larger densities. The fragmentation properties of the presented low-to high-mass regions are consistent with gravitational instable Jeans fragmentation. Furthermore, we find multiple velocity components associated with the resolved cores. Recent radiative transfer hydrodynamic simulations of the dynamic collapse of massive gas clumps also result in multiple velocity components along the line of sight because of the clumpy structure of the regions. This result is supported by a ratio between viral and total gas mass for the whole region <1. Conclusions: This apparently still starless high-mass gas clump exhibits clear signatures of early fragmentation and dynamic collapse prior to the formation of an embedded heating source. A comparison with regions of lower mass reveals that the linear size of star-forming regions does not necessarily have to vary much for different masses, however, the mass reservoirs and gas densities are orders of magnitude enhanced for high-mass regions compared to their lower-mass siblings.Comment: 11 pages, 10 figures, accepted to Astronomy and Astrophysics, high-resolution version with all figures included can be found at http://www.mpia.de/homes/beuther/papers.htm
    • …
    corecore