23,821 research outputs found
Parallel matrix inversion techniques
In this paper, we present techniques for inverting sparse, symmetric and positive definite matrices on parallel and distributed computers. We propose two algorithms, one for SIMD implementation and the other for MIMD implementation. These algorithms are modified versions of Gaussian elimination and they take into account the sparseness of the matrix. Our algorithms perform better than the general parallel Gaussian elimination algorithm. In order to demonstrate the usefulness of our technique, we implemented the snake problem using our sparse matrix algorithm. Our studies reveal that the proposed sparse matrix inversion algorithm significantly reduces the time taken for obtaining the solution of the snake problem. In this paper, we present the results of our experimental work
Modal analysis of high frequency acoustic signal approach for progressive failure monitoring in thin composite plates
During the past few decades, many successful research works have evidently shown remarkable capability of Acoustic Emission (AE) for early damage detection of composite materials. Modal Analysis of AE signals or Modal Acoustic Emission (MAE) offers a better theoretical background for acoustic emission analysis which is necessary to get more qualitative and quantitative result. In this paper, the application of MAE concept in a single channel AE source location detection method for failure characterization and monitoring in thin composite plates was presented. Single channel AE source location is one of the recent studies for composite early damage localization, owing to the growing interest and knowledge of modal analysis of AE wave. A tensile test was conducted for glass fiber epoxy resin specimen with small notch. A single channel of AE system was used to determine the AE source location on specimen under testing. The results revealed that AE single channel source location provides reasonable accuracy for glass fiber laminate which was tested
Effect of the foam embellishments on the pedestrian safety of the vehicle front protection systems
Pedestrian safety related compliance requirements are very important in case of design and development of the vehicle front protection systems. Computer aided engineering impact simulations were carried out to evaluate Head Injury Criterion (HIC) of a typical bullbar impacting it with an adult headform and correlated with experimental results. Impact simulations were carried out on the same bullbar covered with semi‐rigid polyurethane foam to study the effect of foam embellishments on the pedestrian safety. Results obtained from the impact simulations were presented in this paper
Sensitivity of the Tropical Ocean-Atmosphere to Seasonal and Long-Term Climate Forcing
Since the pioneer works of Bjerknes (1966,1969) many studies have been conducted to understand the El Nino and Southern Oscillation (ENSO) phenomenon. These studies have led to a basic understanding of the dynamics of El Nino. Central to the couple dynamics of ENSO is the delayed action oscillator theory (Suarez and Schopf 1988), which successfully describes the cyclic feature of El Nino. While the oscillatory feature of El Nino is reasonably well understood, the irregularity of El Nino, the effect of monsoon on ENSO, and the response of coupled system to the global warming are still under debate. In the present study, we attempt to provide some theoretical understanding of possible impacts of seasonal cycle, monsoon, and climate changes on ENSO using intermediate coupled model
Improved Algorithm for Degree Bounded Survivable Network Design Problem
We consider the Degree-Bounded Survivable Network Design Problem: the
objective is to find a minimum cost subgraph satisfying the given connectivity
requirements as well as the degree bounds on the vertices. If we denote the
upper bound on the degree of a vertex v by b(v), then we present an algorithm
that finds a solution whose cost is at most twice the cost of the optimal
solution while the degree of a degree constrained vertex v is at most 2b(v) +
2. This improves upon the results of Lau and Singh and that of Lau, Naor,
Salavatipour and Singh
Effects of Absorbing Aerosols on Accelerated Melting of Snowpack in the Tibetan-Himalayas Region
The impacts of absorbing aerosol on melting of snowpack in the Hindu-Kush-Tibetan-Himalayas (HKTH) region are studied using NASA satellite and GEOS-5 GCM. Results from GCM experiments shows that a 8-10% in the rate of melting of snowpack over the western Himalayas and Tibetan Plateau can be attributed to the aerosol elevated-heat-pump (EHP) feedback effect (Lau et al. 2008), initiated by the absorption of solar radiation by absorbing aerosols accumulated over the Indo-Gangetic Plain and Himalayas foothills. On the other hand, deposition of black carbon on snow surface was estimated to give rise to a reduction in snow surface albedo of 2 - 5%, and an increased annual runoff of 9-24%. From case studies using satellite observations and re-analysis data, we find consistent signals of possible impacts of dust and black carbon aerosol in blackening snow surface, in accelerating spring melting of snowpack in the HKHT, and consequentially in influencing shifts in long-term Asian summer monsoon rainfall pattern
Ti and V layers retard interaction between Al films and polycrystalline Si
Fine-grained polycrystalline Si (poly Si) in contact with Al films recrystallizes at temperatures well below the Si-Al eutectic (577 °C). We show that this interaction can be deferred or suppressed by placing a buffer layer of Ti or V between the Al film and the poly Si. During annealing, Ti or V form TiAl3 or Val3 at the buffer-layer–Al-film interface, but do not react with the poly Si so that the integrity of the poly Si is preserved as long as some unreacted Ti or V remains. The reaction between the Ti or V layer and the Al film is transport limited ([proportional]t^1/2) and characterized by the diffusion constants 1.5×10^15 exp(–1.8eV/kT) Å^2/sec or 8.4×10^12 exp(–1.7eV/kT) Å^2/sec, respectively
Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities
In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin
Cooling of the North Atlantic by Saharan Dust
Using aerosol optical depth, sea surface temperature, top-of-the-atmosphere solar radiation flux, and oceanic mixed-layer depth from diverse data sources that include NASA satellites, NCEP reanalysis, in situ observations, as well as long-term dust records from Barbados, we examine the possible relationships between Saharan dust and Atlantic sea surface temperature. Results show that the estimated anomalous cooling pattern of the Atlantic during June 2006 relative to June 2005 due to attenuation of surface solar radiation by Saharan dust remarkably resemble observations, accounting for approximately 30-40% of the observed change in sea surface temperature. Historical data analysis show that there is a robust negative correlation between atmospheric dust loading and Atlantic SST consistent with the notion that increased (decreased) Saharan dust is associated with cooling (warming) of the Atlantic during the early hurricane season (July- August-September)
- …