4,906 research outputs found
Statistical Geometry of Packing Defects of Lattice Chain Polymer from Enumeration and Sequential Monte Carlo Method
Voids exist in proteins as packing defects and are often associated with
protein functions. We study the statistical geometry of voids in
two-dimensional lattice chain polymers. We define voids as topological features
and develop a simple algorithm for their detection. For short chains, void
geometry is examined by enumerating all conformations. For long chains, the
space of void geometry is explored using sequential Monte Carlo importance
sampling and resampling techniques. We characterize the relationship of
geometric properties of voids with chain length, including probability of void
formation, expected number of voids, void size, and wall size of voids. We
formalize the concept of packing density for lattice polymers, and further
study the relationship between packing density and compactness, two parameters
frequently used to describe protein packing. We find that both fully extended
and maximally compact polymers have the highest packing density, but polymers
with intermediate compactness have low packing density. To study the
conformational entropic effects of void formation, we characterize the
conformation reduction factor of void formation and found that there are strong
end-effect. Voids are more likely to form at the chain end. The critical
exponent of end-effect is twice as large as that of self-contacting loop
formation when existence of voids is not required. We also briefly discuss the
sequential Monte Carlo sampling and resampling techniques used in this study.Comment: 29 pages, including 12 figure
A Two-Coordinate Nickel Imido Complex That Effects C−H Amination
An exceptionally low coordinate nickel imido complex, (IPr*)Ni═N(dmp) (2) (dmp = 2,6-dimesitylphenyl), has been prepared by the elimination of N_2 from a bulky aryl azide in its reaction with (IPr*)Ni(η^6-C_7H_8) (1). The solid-state structure of 2 features two-coordinate nickel with a linear C−Ni−N core and a short Ni−N distance, both indicative of multiple-bond character. Computational studies using density functional theory showed a Ni═N bond dominated by Ni(dπ)−N(pπ) interactions, resulting in two nearly degenerate singly occupied molecular orbitals (SOMOs) that are Ni−N π* in character. Reaction of 2 with CO resulted in nitrene-group transfer to form (dmp)NCO and (IPr*)Ni(CO)_3 (3). Net C−H insertion was observed in the reaction of 2 with ethene, forming the vinylamine (dmp)NH(CH═CH_2) (5) via an azanickelacyclobutane intermediate, (IPr*)Ni{N,C:κ^2-N(dmp)CH_2CH_2} (4)
Yeah, Right, Uh-Huh: A Deep Learning Backchannel Predictor
Using supporting backchannel (BC) cues can make human-computer interaction
more social. BCs provide a feedback from the listener to the speaker indicating
to the speaker that he is still listened to. BCs can be expressed in different
ways, depending on the modality of the interaction, for example as gestures or
acoustic cues. In this work, we only considered acoustic cues. We are proposing
an approach towards detecting BC opportunities based on acoustic input features
like power and pitch. While other works in the field rely on the use of a
hand-written rule set or specialized features, we made use of artificial neural
networks. They are capable of deriving higher order features from input
features themselves. In our setup, we first used a fully connected feed-forward
network to establish an updated baseline in comparison to our previously
proposed setup. We also extended this setup by the use of Long Short-Term
Memory (LSTM) networks which have shown to outperform feed-forward based setups
on various tasks. Our best system achieved an F1-Score of 0.37 using power and
pitch features. Adding linguistic information using word2vec, the score
increased to 0.39
NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations
We present a benchmark of the density functional linear response calculation
of NMR shieldings within the Gauge-Including Projector-Augmented-Wave method
against all-electron Augmented-Plane-Wavelocal-orbital and uncontracted
Gaussian basis set results for NMR shieldings in molecular and solid state
systems. In general, excellent agreement between the aforementioned methods is
obtained. Scalar relativistic effects are shown to be quite large for nuclei in
molecules in the deshielded limit. The small component makes up a substantial
part of the relativistic corrections.Comment: 3 figures, supplementary material include
Bell inequality with an arbitrary number of settings and its applications
Based on a geometrical argument introduced by Zukowski, a new multisetting
Bell inequality is derived, for the scenario in which many parties make
measurements on two-level systems. This generalizes and unifies some previous
results. Moreover, a necessary and sufficient condition for the violation of
this inequality is presented. It turns out that the class of non-separable
states which do not admit local realistic description is extended when compared
to the two-setting inequalities. However, supporting the conjecture of Peres,
quantum states with positive partial transposes with respect to all subsystems
do not violate the inequality. Additionally, we follow a general link between
Bell inequalities and communication complexity problems, and present a quantum
protocol linked with the inequality, which outperforms the best classical
protocol.Comment: 8 pages, To appear in Phys. Rev.
- …