1,371 research outputs found

    Le péroxyde d'hydrogène en désodorisation physico-chimique : Rôle de la composition de la solution de lavage dans le mécanisme d'action

    Get PDF
    La désodorisation physico-chimique en stations d'épuration s'effectue généralement par lavage basique oxydant pour piéger les espèces soufrées réduites telles que H2 S ou CH3 SH. L'utilisation du peroxyde d'hydrogène n'est pas encore répandue en comparaison de celle du chlore. Cette étude a été menée afin de déterminer le comportement de H2O2 en fonction de la composition de l'eau de lavage. L'influence des paramètres : concentration en métaux (fer, manganèse, cuivre et zinc), pH, [H2O2], [CO32-], [HS-] a été étudiée en utilisant un plan d'expériences. La décomposition de H2O2 et la concentration de radicaux libres ont été mesurées pour chaque expérience. En présence de métaux, un pH élevé et une forte concentration en peroxyde sont les deux paramètres principalement responsables d'une forte décomposition. Cette décomposition serait accompagnée d'une production de radicaux avec [HO°]max =10-13 M. Cette valeur mesurée de radicaux dans le milieu n'explique qu'une petite part de la décomposition de peroxyde observée. Par conséquent, la majorité de la décomposition est due à des réactions soit à la surface des oxydes, soit en solution avec les cations dissous. Le mélange de métaux et de carbonates à pH 10,5 présente un effet de synergie sur la décomposition de H2O2. Ces résultats démontrent que malgré le pouvoir oxydant des radicaux HO° formés, l'utilisation de H2O2 en désodorisation ne sera possible qu'avec l'ajout de stabilisant.Deodorization of wastewater treatment plants involves the elimination of molecules such as NH3, amines and sulphur compounds like H2 S and mercaptans. In classical physico-chemical processes, NH3 and amines are trapped in acid solution by washing air in a scrubbing tower, while sulphides are eliminated in basic oxidising solutions. The oxidant usually used is sodium hypochlorite. Elimination of sulphides and organosulphides generally demands two scrubbers: one at pH 9 and the other at pH 11. Because chlorine in deodorization generates the formation of organochlorinated species, it should soon become necessary to replace this oxidant in order to avoid the formation of such compounds. The present study follows the behaviour in wash conditions not of chlorine, but hydrogen peroxide, in order to discover the deodorization capacity of this molecule.The kinetics of H2 S oxidation by H2O2 are well known; the constant is given by log k = 12.04 - (2641/T) - 0.186 x pH (Millero et al., 1989). Unfortunately H2O2 shows strong decomposition in alkaline medium, due to the presence of metals and carbonates in the solution. Initiating a homolytic reaction results in the decomposition of peroxide. However, increasing the concentration of free radicals may improve H2 S oxidation and consequently, the efficiency of the process.To better understand the behaviour of H2O2 in wash conditions, various parameters were studied, namely pH (9 and 10.5), [H2O2] (1 and 5 g L-1), metal concentrations (iron, manganese, copper and zinc) (20 and 200 µg L-1), [CO32-] (0 and 100 mg L-1) and [HS-] (0 and 2 mg L-1). Four experimental designs, one for each metal, were employed to reduce the number of experiments and benefit from statistical laws. H2O2 decomposition and HO° concentration were measured and empirical equations established. All experiments were performed in closed-batch reactors with ultra-pure reactants and water. Measurements of HO° concentrations necessitated the addition of atrazine to the solution. The oxidation of this pesticide by HO° is well known. Using atrazine concentrations measured through time, the HO° concentrations were calculated according to the equationln ([Atz]0/[Atz]) = k[HO∘]twith k=2.1 × 109 M-1 s-1 (De Laat et al., 1997). Oxidation of atrazine was halted by extraction onto a Ct18 Sep-Pack resin and samples were analysed by liquid chromatography.The results showed that in the presence of metals H2O2 decomposition was maximal at high pH and with high peroxide concentrations. The decomposition was accompanied by HO° production. However, the presence of metals generated the decomposition of H2O2 with a reduced production of free radicals compared with ultra-pure water, which indicates that metal oxides were not only decomposition catalysts, but also radical inhibitors. Comparison of simplified radical decomposition, calculated according to the equation([H2O2]/[H2O2]0)=e-k[HO∘]t,and observed decomposition showed that under these conditions H2O2 consumption was mainly due to metal reactivity. Nonetheless, increasing iron and copper concentrations from 20 to 200 µg L-1 did not modify the decomposition rate of H2O2. For this reason we postulate a Fenton-like reaction between H2O2 and dissolved metals in which concentrations are determined by solubility products. It follows that the kinetics of H2O2 decomposition can be summarised by r=-k1 [oxide][H2O2] - k2[ Mn+][H2O2] - k3 [HO°][H2O2], with [metal]Tot =[Mn+] + [oxide] and, in the case of Cu and Fe, k1 [oxide][H2O2] << k2[ Mn+][H2O2].To conclude, the addition of four metals with [CO32-]=1 g L-1 at pH 10.5 produces a synergetic effect, resulting in a much faster decomposition. These conditions, unfortunately, resemble deodorization conditions. The use of a stabiliser that inhibits not only free radicals but also decomposition catalysts is therefore necessary for deodorization

    Effets des anions minéraux sur la décomposition de l'ozone dans l'eau

    Get PDF
    L'influence des anions minéraux sur la décomposition de l'ozone est étudiée. Les expériences mettent en oeuvre les anions SO42-, PO43-, BO33-, SiO22-, NO3-, HCO3-+ CO32- à des concentrations identiques à celles habituellement rencontrées dans le domaine des eaux potables. Un plan d'expérience simple qui permet d'attribuer ou non une influence à chaque espèce minérale et de voir l'interaction éventuelle avec le pH est utilisé. Les manipulations sont réalisées sur un pilote de laboratoire conçu pour éliminer toutes traces de matières organiques.L'étude fait apparaître que seuls les carbonates et les bicarbonates ont une influence notable sur cette décomposition et que le pH interfère en jouant sur l'équilibre carbonates-bicarbonates. Ceci permet de vérifier l'équation théorique établie par YURTERI et GUROL (1988) en l'absence de matières organiques. L'ordre apparent de la réaction varie entre 1 et 2 : ordre 2 pour les teneurs en bicarbonates faibles (30 mg.l-1) et ordre 1 pour une teneur forte (300 mg.l-1) lorsque le pH basique déplace l'équilibre vers les carbonates. Pour 300 mg.l-1 et des pH neutres l'ordre de la réaction oscille entre 1,5 et 2. Pour un ordre 1, on peut calculer la constante d'initiation de la décomposition de l'oxydant par l'ion hydroxyle OH- (k = 80 l.mol-1 s-1).The influence of anionic mineral species on the decomposition of ozone in water was studied. The experiments involved the anions SO42-, PO43-, BO33-, SiO22-, NO3-, HCO3-+ CO32- at concentrations identical to those usually found in drinking water. The manipulations were carried out with a simple experimental procedure which allowed to determine whether or not the mineral species had an influence on this decomposition and to observe thereof the effect of the pH. A laboratory pilot made of glass and teflon, in order to eliminate any traces of organic compounds, was used.Results of this work prove that only the carbonates and bicarbonates have a notable influence on this decomposition and that the pH interferes by disrupting the bicarbonate-carbonate equilibrium. The theoretical equation established without organic compounds by YURTERI and GUROL (1988) is verified.The order of the reaction varies from 1 to 2. The order is 1 when the amount of bicarbonates is weak (30 mg/l). The order is 2 in the case of a 300 mg.l-1 concentration when the basic pH changes the equilibrium towards the carbonates. For 300 mg.l-1 concentrations and a neutral pH, the order of the reaction reaches values from 1,5 to 2. In the case of an order 1, the constant rate of the oxidant decomposition by hydroxyle ion OH¯ is calculated. Its value is 80 l.mol-1 s-1

    Angular distribution studies on the two-photon ionization of hydrogen-like ions: Relativistic description

    Full text link
    The angular distribution of the emitted electrons, following the two-photon ionization of the hydrogen-like ions, is studied within the framework of second order perturbation theory and the Dirac equation. Using a density matrix approach, we have investigated the effects which arise from the polarization of the incoming light as well as from the higher multipoles in the expansion of the electron--photon interaction. For medium- and high-Z ions, in particular, the non-dipole contributions give rise to a significant change in the angular distribution of the emitted electrons, if compared with the electric-dipole approximation. This includes a strong forward emission while, in dipole approxmation, the electron emission always occurs symmetric with respect to the plane which is perpendicular to the photon beam. Detailed computations for the dependence of the photoelectron angular distributions on the polarization of the incident light are carried out for the ionization of H, Xe53+^{53+}, and U91+^{91+} (hydrogen-like) ions.Comment: 16 pages, 4 figures, published in J Phys

    Formation des ions bromate dans une colonne à bulles: Effets du peroxyde d'hydrogène lors de l'ozonation

    Get PDF
    L'utilisation de l'ozone, aujourd'hui très répandue dans les filières de potabilisation, n'est pas sans effet secondaire. De nombreux sous-produits peuvent se former comme notamment les ions bromates, sous produits finaux d'oxydation des bromures contenus dans les eaux. Malheureusement, le mécanisme de production de cette espèce est complexe et dépend de nombreux paramètres difficiles à appréhender.Sur une installation pilote de type colonne à bulles fonctionnant à contre-courant, nous avons étudié l'influence de différents paramètres, comme le pH, le temps de contact, la dose d'ozone et la dose de peroxyde d'hydrogène, sur la formation des bromates et la dégradation des pesticides, représentée par l'atrazine.Les résultats de la littérature ont été confirmés lors de l'emploi unique de l'ozone. La formation des ions bromate est influencée par la présence du peroxyde d'hydrogène. Cet oxydant intervient de manière non négligeable sur la consommation des entités intermédiaires. Le couple HOBr/OBr- peut être oxydé par l'ozone moléculaire et le radical OH° mais peut également être réduit par l'ozone et par le peroxyde sous sa forme acide ou sa base conjuguée. En ce qui concerne la dégradation des pesticides, l'utilisation de peroxyde d'hydrogène couplé à l'ozone favorise l'oxydation de la molécule d'atrazine grâce à la présence plus importante de radicaux hydroxyles.Une pollution accidentelle en pesticides pourra être traitée par l'ajout ponctuel de peroxyde d'hydrogène avec une augmentation de pH, la formation des bromates sera, dans ce cas, faible. La désinfection sera alors assurée par l'étape de chloration.In drinking water treatment plants, ozonation is often used to disinfect, to remove micropollutants and to improve water taste and odour. Ozonation increases organic matter biodegradability before filtration through granular active carbon and reduces the concentration of haloform precursors that react in the final chlorination step. However, by-products that could be detrimental to human health could be formed. For example, bromates, which are classified as carcinogenic compounds by the I.A.R.C, are produced during the ozonation of bromide-containing water. The mechanism of bromate formation is complex, due to the participation of molecular ozone and radical (hydroxyl and carbonate) reactions. The optimisation of the process should allow for a good disinfection and a reduction in the levels of micropollutants, together with low by-product formation.Using a pilot-scale counter-current bubble column, we have measured the bromate concentration in relation to pesticide removal. Water spiked with bromide and atrazine was stored in a completely stirred-tank (2 m3) before being pumped to the top of the column. The inlet gaseous ozone was measured by an analyser using UV detection, the outlet gaseous ozone was monitored by the potassium iodide method, and the dissolved ozone concentration was determined by the indigo trisulfonate method. Bromides and bromates were quantified by ion chromatography with a conductimetric detector, with a sodium carbonate solution as the eluant. Samples for bromate analysis were pretreated by OnGuard-Ag and OnGuard-H cartridges in series before injection. Atrazine degradation was measured by high performance liquid chromatography with a diode array detector, with a CH3CN/H2O mixture as the eluant. The linearisation of atrazine removal allowed us to calculate the hydroxyl radical concentration in a series of a completely-stirred tank reactors and in a plug-flow reactor.We have studied the influence of several parameters on bromate formation, including pH, bromide concentration and hydrogen peroxide concentration. As bromate production is a function of bromide concentration, we have chosen to calculate the ratio between the real bromate concentration and the theoretical bromate concentration if all bromide were oxidised to bromate. The pH affects bromate formation: an increase in pH in the absence of hydrogen peroxide increases bromate production, but when this oxidant is applied bromate production decreases when the pH increases. If reaction progress is represented as a function of [O3]*TC, we note that the presence of hydrogen peroxide increases bromate formation because of the increase in hydroxyl radical concentration, which favours radical formation. Nevertheless, if we represent reaction progress as a function of [OH∘]*TC, hydrogen peroxide seems to be an initiator and a scavenger in the mechanism of bromate formation. If we calculate the rates of all the oxidation and reduction reactions for HOBr/OBr- species, the contribution to the reduction of HOBr/OBr- species by peroxide is very important in comparison to the oxidation reactions, which inhibits bromate production. Without the hydrogen peroxide, the contribution of oxidation is equal to that of the reduction reaction, and in this case bromate formation is effective. When, under the same initial operational conditions, we apply hydrogen peroxide with an increase in pH, we observe a decrease in bromate formation with a decrease of the dissolved ozone concentration, which hinders the desired disinfection. The main contribution to atrazine oxidation is from the free-radical reactions, which explains why removal is better when we apply hydrogen peroxide than when we use ozone alone. However, if we want to respect a low bromate level in drinking water, atrazine degradation should not be greater than 90% for the operational conditions on our pilot-scale.If an accidental high pesticide concentration is observed, an addition of hydrogen peroxide with a concurrent increase of pH, could treat the pollution. In this case, a subsequent chlorination step would then have to be used to assure the disinfection alone

    Étude du traitement et du recyclage des eaux issues des serres horticoles

    Get PDF
    La gestion de l'eau dans les systèmes de culture hors-sol fait apparaître deux problèmes distincts. D'une part, les ressources en eau doivent être de bonne qualité et ne pas contenir de pesticides ou de germes pathogènes. D'autre part, les rejets fortement " chargés " en nutriments (NO3-, PO43-) polluants pour l'environnement, doivent être limités par le biais de leur recyclage ce qui implique nécessairement la désinfection des effluents.La technique mise en œuvre pour obtenir cette maîtrise de la qualité tant chimique que microbiologique des solutions circulantes en culture hors-sol est celle d'une oxydation à l'ozone seul et couplé au peroxyde d'hydrogène dans des réacteurs constitués de mélangeurs statiques. Les conditions de traitement sont une dose d'oxydant de 10 g O3/m3 d'effluent à traiter, un rapport H2O2/O3 de 0,15 g/g pour un temps de contact dans le réacteur de l'ordre de la seconde. Etudié sur site dans le cadre du traitement de effluents de serre réels, le procédé s'est révélé tout à fait adapté pour abattre les pesticides (# 90 % pour l'atrazine), maîtriser la prolifération des micro-organismes (Flore aérobie mésophile, flore fongique) et en particulier des germes pathogènes (Clavibacter michiganensis, Fusarium, Pythium sp ).Le procédé novateur O3/H2O2 sur mélangeurs statiques constitue donc pour les serristes une réponse nouvelle dont l'un des intérêts est de combiner les effets " détoxiquant " et désinfectant.The management of water resources in soil-less cultures presents two difficulties. On one hand, the quality of these resources has to be good, that is to say without pesticides or pathogens. On the other hand, the effluents contain high concentrations of nutrients (NO3-, PO43-), damageable for the environment, and should be recycled. Thus, recycling has to include necessarily a disinfection step to satisfy the quality requirement. The main disinfection treatments used in soil-less cultures are slow sand filtration, ultraviolet treatment, heat treatment, nanofiltration, ozone or hydrogen peroxide oxidation, iodine or chlorine treatment.In order to control the chemical as well as the microbiological quality of the recycled nutrient solution, we suggest oxidation (O3) and advanced oxidation (O3/H2O2) processes, carried out in static mixers as chemical reactors instead of bubble columns. We have been studying this process in situ for the treatment of a 1-hectare greenhouse. The pilot plant unit can be configured under three setups (Figure 2) according to the aim to favor either the molecular action of ozone or the formation of very reactive radical species such as the hydroxyl radical. In this second case, the mechanism of ozone decomposition is given by Figure 1.The first step of the study was to measure the influence of the nutrient solution to be recycled on the efficiency of atrazine removal (Figures 3 and 4). In comparison with tap water, the percentage of pesticide removal is lower by about 10 to 20 %. Solutions with nutrients do not drastically change the process efficiency. The experiments were carried out with various ozone dosages and various ozone / hydrogen peroxide mass ratios, using the three configurations (Figures 5 and 6). With these results, the best operating conditions for micropollutant removal are a treatment rate of about 10 g O3 /m3 of treated solution, a H2O2/O3 ratio equal to 0.15 g/g and a contact time in the reactor in the range of 1 to 2 seconds. The influence of the configuration type is not really marked. The results show that, under these conditions, this technique leads to good pesticide removal efficiencies (about 90 % for atrazine).In a second step, experiments were carried out on real solutions containing microorganisms from the greenhouse, sometimes spiked with special bacteria (Clavibacter) or fungi (Fusarium). Some results are reported in Figures 7, 8 and 9. With the same oxidant dosage conditions, the role of the configuration is clearly demonstrated. The best results are obtained with a molecular action of ozone in the first static mixed reactor followed by a free-radical action within the second reactor. Thus, it is possible to prevent germ proliferation (aerobic mesophilic flora and fungi flora) and particularly pathogenic species. The abatement of Clavibacter michiganensis reaches 3.5 to 4 logarithmic units, 1 to 1.5 units for Pythium and 2 to 4 units for Fusarium. The treatment does not effect a complete sterilization, e.g., the beneficial bacterium Pseudomonas fluorescens survives. The global impact of the treatment on the nutritive quality of the treated solution is negligible. Nevertheless, we can note that the process induces a decrease of the ion concentrations of Fe (II) (- 5 to 30 %) and Mn (II) (-10 to 15 %) as a result of the oxidation of the EDTA chelate. In fact, this problem is observed with all oxidation and UV treatments. The residual oxidant (O3, H2O2) concentrations are low and do not induce obvious toxic effects on the cultures.Thus, the technique is consistent with a recycling of the treated effluents. The advantages of the process include very short contact times, compactness of the equipment, no need for pretreatment, reasonable investment and operating costs, an increase of the oxygen concentration in the treated effluent, and possible curative effects on the culture's germ contamination due to the residual concentration of hydrogen peroxide. The disinfection efficiency of this suggested process is similar to those obtained with more common techniques like UV irradiation. Moreover, the studied process can also reduce, for example, an eventual chemical pollution of the water resource. In conclusion, the O3, H2O2 process in static mixers appears to be a new solution for greenhouse farmers

    Herbicide accumulation and evolution in reservoir sediments

    Get PDF
    The aim of the present study was to understand the effect of reservoir configurations on sediment pesticide fate. Two dams were selected on the River Garonne, in southwest France: Carbonne and Golfech, both with reservoirs subject to accumulation of herbicide-contaminated sediment. They are situated upstream and downstream respectively of an agricultural and urban area: the Mid-Garonne. The results presented include pesticide concentrations and C/N ratios in the smaller sediment particles (b2 mm) and values of oxygenation and herbicide concentrations in the water. The dynamic behaviour of sediment in the reservoirs is discussed. The present study shows that the theoretical lifespan (weak remanence in vitro) and the results actually observed in the sediment are conflicting. Pesticide contamination in Carbonne indicates conservation, even accumulation, of herbicide molecules while in Golfech transformation processes clearly dominate. The hydromorphological position of Golfech reservoir, i.e. located at the junction of two rivers with contrasting hydrological regimes and very different oxygenation conditions, leads to accelerated pesticide desorption or degradation. Unfortunately, this configuration is rare

    Effet de la matrice de l'eau sur l'élimination des micropolluants organiques par ozonation. Partie 1. Consommation spécifique de l'ozone dans un réacteur

    Get PDF
    A partir des réactions possibles entre l'ozone, les radicaux et les principaux composants d'une eau à potabiliser, des formules théoriques de formations de radicaux et de décomposition de l'ozone sont établies. La matière organique est schématisée par les composés qui réagissent avec l'ozone (Si), les initiateurs, les promoteurs et les inhibiteurs de la réaction radicalaire (SIi, Sp,i, Ss,i). La décomposition de l'ozone est ensuite mesurée pour 56 eaux naturelles caractérisées par les analyses suivantes (pH, Absorbance à 254 nm, COT, Alcalinité). En se basant sur les connaissances acquises et les valeurs expérimentales du taux spécifique de consommation de l'ozone w, l'équation théorique est simplifiée et on obtient:-(d[O3]/dt)=([O3](∑kDlSl,i)(∑klDP,i[SP,i])) / ([HCO3-](k9+k10 10pH-10,25))En prenant le COT comme représentatif des [Sp,i] (attaque radicalaire non sélective) et l'absorbance à 254 nm comme representative de SI,i (attaque directe sur les cycles aromatiques), une analyse multifactorielle permet d'obtenir l'expression:log10w = -3,93 + 0,24pH + 0,75 log10 Absorbance à 254 mm + 1,08 log10 COT - 0,19 log10 alcalinitéL'équation ainsi obtenue peut être utilisée dans tous les modèles prédictifs faisant appel aux bilans massiques sur l'oxydant.From the numerous reactions between ozone and other components of raw water in a drinking water plant, we obtain theoretical equations for hydroxy radical concentrations (1) and for the disappearance of ozone (2). Dissolved organic matter is divided in to four components: substances which react with ozone by a direct mechanism (Si), initiators, promotors, and scavengers ofradical reactions (SI,i, SP,i, SS,i). We also take into account the reactions between hydrogen peii*iâô. orThe, and free radicals to simulate advanced oxidation processes.[OH∘]= ([O3]{2k1∙10pH-14+2k2 10pH-11,6 [H2O2] + ∑kdl,i [Sl,i]}) / (klD[P]+[HCO3-] (k9+k10∙10pH-10,25)+∑klDS,i [Ss,i])   (1)-(d[O3])/(dt) = {kD[P]+∑kD,i[Si]+∑kDl,i[Sl,i]+3k110pH-14+k210pH-11,6H2O2]}[O3]+[OH∘]{k8[O3]+[H2O2](k210pH-11,6+K7)+∑klDP,i[SP,i]   (2)For 56 natural water samples, we measured the disappearence of ozone directly in a completely stirred batch reactor. Water samples were characterized by pH, TOC, 254 nm UV absorbance and alkalinity. Kinetics were first order with respect to ozone(d[O3])/(dt) = -w[O3]with w : specific ozone disappearence rate.Each term of equation 2 is discussed and, based on the experimental values of w, a simplified equation 3 obtained :-(d[O3])/(dt) = ([O3](∑kDISl,i)(∑klDP,i[SP,i))/([HCO3](k9+k10 10pH-10,25))The TOC parameter can represent [SP,i] because radical reactions are non selective, where as the 254 nm UV absorbance can represent [Si] because organic matter (Fulvic and Humic acid) can react directly with ozone via its constituent aromatic rings.Using the data set of 56 w values measured in natual water samples, mathematical correlations can be calculated :log10w = -3,93 + 0,24pH + 0,75 log10 Absorbance à 254 mm + 1,08 log10 COT - 0,19 log10 alcalinityA strong correlation between experimental measurements and predicted w values is obtained

    Effet de la matrice de l'eau sur l'élimination des micropolluants organiques par ozonation. Partie 2. Simulation de l'élimination d'un micropolluant dans les réacteurs idéaux

    Get PDF
    L'équation cinétique qui permet de calculer l'oxydation d'un micropolluant dans les réacteurs d'ozonation s'écrit:-(d[P]/dt)=(KD[O3]L+KID[OH∘])[P]Kd et Kid: constantes de vitesse de l'ozone et des radicaux hydroxyles sur le micropolluant P.Dans la première partie, l'approche théorique de la concentration en radicaux hydroxyles a montré que [OH·] est proportionnel à la concentration en ozone ([OH·] = k'[03]). On a donc:(d[P]/dt)=KG[O3]L[P] with KG=KD+KIDK'Dans un réacteur parfaitement agité, les concentrations en ozone et en micropolluant sont constantes et l'élimination s'écrit: ([P]/[Po])=(1/1+KG[O3]L τ) with τ=(V/Q)Dans un réacteur piston, les concentrations varient tout au long de la colonne et il est habituel de modéliser un tel réacteur comme un grand nombre de R.P.A. en série de volume DeltaV et de hauteur DeltaH (Dans notre approche DeltaH = 0,01 m).Dans les deux cas, la simulation de l'élimination du micropolluant est basée sur la connaissance de la valeur de kG et de la concentration en ozone dans l'eau [03]L[03]L est obtenue de la résolution des bilans massiques dans un volume V ou ~V. ozone à l'entrée + ozone transféré = ozone à la sortie + ozone consomméL'ozone transféré utilise pour son calcul des relations semi-empiriques donnant la constante de Henry et la valeur du kLa.L'ozone consommé est déduit de la relation établie dans la partie 1:(d[O3]L/dt)=w[O3]LLes résultats de la simulation sont comparés aux résultats expérimentaux obtenus avec un pesticide organo-phosphoré, le parathion. Les paramètres variables sont le temps de contact (300 - 600 s), le pH (6,7 - 8,2) et le taux de traitement (1 à 5 g/m3).Une valeur de kG comprise entre 500 et 600 M-¹s-¹ donne une bonne corrélation entre les valeurs expérimentales et calculées. Cependant, on peut noter quelques différences, en particulier dans la partie basse de la colonne, ce qui montre la nécessité de prendre en compte pour des calculs plus précis l'hydrodynamique du réacteur. L'emploi du programme de simulation permet de tracer deux abaques qui montrent l'influence pour n'importe quel micropolluant des facteurs kGteta et w.Micropollutant (P) oxidation in an ideal ozonation reactor uses the kinetic équation:(d[P]/dt)=(KD[O3]L+KID[OH∘])[P]kD and kID : kinetic rate constant of ozone and hydroxy radicals on the micro -pollutant P.In part 1, the theoritical équation shows that [OH°] is proportional to the ozone concentration ([OH°] = k'[O3]) and thus the following equation is obtained :(d[P]/dt)=KG[O3]L[P] with KG=KD+KIDK'In a completely stirred tank reactor, ozone concentration in liquid phase is constant and pesticide elimination is given by the equation :([P]/[Po])=(1/1+KG[O3]L τ) with τ=(V/Q)In a plug flow reactor, ozone concentration in liquid phase varies along the column. To modelize them, we use the model of completely stirred tank reactors in series where the unit volume is ∆V. In our calculations, this volume is obtained by S (reactor cross section area) and ∆h equal to 0,01 m. In this volume ∆V, ozone and micropoliutant concentrations are considerad as a constant.Simulation calculations are based on the knowledge of global kinetic constant kG and ozone concentration.The value of the ozone concentration is obtain from mass balances on the oxklant (on a ∆V or V volume reactor) :ozone inlet + transferred ozone = consumed ozone + ozone outletThe quantifies of transferred ozone are calculated from the Henry law and a semi empirical kLa equation.The quantity of consumed ozone is calculated from the equation in part I(d[O3]L/dt)=w[O3]LExperimental results are obtained with parathion, an organo-phosphorus pesticide on a bubble column pilot plant:Parameters are contact time (300-600 s), pH (6,7-8-2) and ozone treatment rate (1 to 5 g/m3).A kG value of 500 or 600 M-l s-l shows a good correlation between predicted and simulated pesticide concentrations.However, there are noticable differences, especially at the bottom of the column. This shows the necessity to take into account the hydrodynamic properties of the reactor during next works. The use of the simulation program lets to calculate the elimination of pesticide versus the two main parameters : the factor kGteta and the value of w
    corecore