168 research outputs found

    Effects of Rescattering in (e,e'p) Reactions within a Semiclassical Model

    Get PDF
    The contribution of rescattering to final state interactions in (e,e'p) cross sections is studied for medium and high missing energies using a semiclassical model. This approach considers two-step processes that lead to the emission of both nucleons. The effects of nuclear transparency are accounted for in a Glauber inspired approach and the dispersion effects of the medium at low energies are included. It is found that rescattering is strongly reduced in parallel kinematics. At high missing energy and momenta, the distortion of the short-range correlated tail of the spectral function is dominated by a rearrangement of that strength itself. In perpendicular kinematics, a further enhancement of the experimental yield is due to strength that is originally in the mean field region. This contribution becomes negligible at large missing momenta.Comment: 10 pages, 9 figures. Minor corrections: improved figures and few comments adde

    The Transparency of 12C for Protons

    Full text link
    Existing cross-section data for 1p-shell knockout in the reaction 12C(e,e'p) - as obtained under different kinematic conditions - are shown to be mutually consistent, apart from a recent measurement performed in Mainz. New data have been collected at the Amsterdam Pulse Stretcher that confirm the normalization of the older measurements. An analysis of the world's 12C(e,e'p) data has yielded precise values of the spectroscopic factor for 1p-shell and 1s-shell knockout from 12C. These values have been used to evaluate the transparency of the 12C nucleus for 1p-shell and 1s-shell protons separately on the basis of recent high-energy 12C(e,e'p) data taken at a four-momentum transfer squared of 1.1 GeV/c^2. As the resulting average value of the nuclear transparency, 0.81(0.04), is considerably higher than the value obtained from previous analyses and theoretical estimates, the high Q^2 data were used instead for an independent determination of the spectroscopic strength for 1p + 1s knockout. Combining these results with the low Q^2 data the spectroscopic factors appear to be momentum-transfer dependent. Possible explanations of these surprising results in terms of reaction-mechanism effects or a possible breakdown of the quasi-particle concept at high Q^2 are discussed as well.Comment: 11 pages 8 figure

    Selected Topics in High Energy Semi-Exclusive Electro-Nuclear Reactions

    Get PDF
    We review the present status of the theory of high energy reactions with semi-exclusive nucleon electro-production from nuclear targets. We demonstrate how the increase of transferred energies in these reactions opens a complete new window in studying the microscopic nuclear structure at small distances. The simplifications in theoretical descriptions associated with the increase of the energies are discussed. The theoretical framework for calculation of high energy nuclear reactions based on the effective Feynman diagram rules is described in details. The result of this approach is the generalized eikonal approximation (GEA), which is reduced to Glauber approximation when nucleon recoil is neglected. The method of GEA is demonstrated in the calculation of high energy electro-disintegration of the deuteron and A=3 targets. Subsequently we generalize the obtained formulae for A>3 nuclei. The relation of GEA to the Glauber theory is analyzed. Then based on the GEA framework we discuss some of the phenomena which can be studied in exclusive reactions, these are: nuclear transparency and short-range correlations in nuclei. We illustrate how light-cone dynamics of high-energy scattering emerge naturally in high energy electro-nuclear reactions.Comment: LaTex file with 51 pages and 23 eps figure

    Signals for black body limit in coherent ultraperipheral heavy ion collisions

    Get PDF
    We argue that study of total cross section of photoabsorption and coherent photoproduction of ρ,ρ\rho,\rho^{\prime}-mesons in ultraperipheral heavy ion collisions (UPC) is effective method to probe onset of black body limit(BBL) in the soft and hard QCD interactions. We illustrate the expected features of the onset of BBL using generalized vector dominance model. We show that this model describes very well ρ\rho-meson coherent photoproduction at 6Eγ10GeV6 \leq E_{\gamma} \leq 10 GeV. In the case of ρ\rho-meson production we find a UPC cross section which is a factor 1.5\sim 1.5 larger than the one found by Klein and Nystrand. The advantages of the process of coherent dijet production to probe onset of BBL in hard scattering regime where decomposition over the twists becomes inapplicable are explained and relative importance of the γ+Pomeron\gamma +Pomeron and γ+γ\gamma +\gamma mechanisms is estimated.Comment: 17 pages, 7 figure

    2s1/2 occupancies in 30Si, 31P, and 32S

    Get PDF
    Elastic electron scattering off Si-30 and P-31 was studied in an effective momentum-transfer range of 1.8-3.0 fm(-1). The form-factor data were analyzed together with existing data sets for these nuclei and for S-32 in a model-independent Fourier-Bessel expansion. For P-31 the M1 contribution was subtracted following an established parametrization. Results of Hartree-Fock (HF) calculations, performed for these three nuclei in a spherical basis and in an axially deformed basis, are compared to experiment. Occupancies have been determined which, when used in the spherical-basis HF calculations, lead to a good description of the elastic form-factor data. The deformed-basis calculations have been used to study the influence of the deformation on the calculated binding energies and ground-state charge densities. In all calculations the influence of using different effective nucleon-nucleon interactions was investigated. The resulting differences in 2s(1/2) in occupancy are combined with results from previous existing (e,e'p) experiments to yield ''absolute occupancies'' for the 2s(1/2) orbital. The deduced 2s(1/2) occupancies for Si-30 and S-32 are 0.24(4) and 1.35(19), respectively.Peer reviewe

    Signatures of Nucleon Disappearance in Large Underground Detectors

    Full text link
    For neutrons bound inside nuclei, baryon instability can manifest itself as a decay into undetectable particles (e.g., nνννˉ\it n \to \nu \nu \bar{\nu} ), i.e., as a disappearance of a neutron from its nuclear state. If electric charge is conserved, a similar disappearance is impossible for a proton. The existing experimental lifetime limit for neutron disappearance is 4-7 orders of magnitude lower than the lifetime limits with detectable nucleon decay products in the final state [PDG2000]. In this paper we calculated the spectrum of nuclear de-excitations that would result from the disappearance of a neutron or two neutrons from 12^{12}C. We found that some de-excitation modes have signatures that are advantageous for detection in the modern high-mass, low-background, and low-threshold underground detectors, where neutron disappearance would result in a characteristic sequence of time- and space-correlated events. Thus, in the KamLAND detector [Kamland], a time-correlated triple coincidence of a prompt signal, a captured neutron, and a β+\beta^{+} decay of the residual nucleus, all originating from the same point in the detector, will be a unique signal of neutron disappearance allowing searches for baryon instability with sensitivity 3-4 orders of magnitude beyond the present experimental limits.Comment: 13 pages including 6 figures, revised version, to be published in Phys.Rev.

    Many-body effects in 16O(e,e'p)

    Get PDF
    Effects of nucleon-nucleon correlations on exclusive (e,ep)(e,e'p) reactions on closed-shell nuclei leading to single-hole states are studied using 16O(e,ep)15N^{16}O(e,e'p)^{15}N (6.326.32 MeV, 3/23/2^-) as an example. The quasi-hole wave function, calculated from the overlap of translationally invariant many-body variational wave functions containing realistic spatial, spin and isospin correlations, seems to describe the initial state of the struck proton accurately inside the nucleus, however it is too large at the surface. The effect of short-range correlations on the final state is found to be largely cancelled by the increase in the transparency for the struck proton. It is estimated that the values of the spectroscopic factors obtained with the DWIA may increase by a few percent due to correlation effects in the final state.Comment: 21 Pages, PHY-7849-TH-9
    corecore