89 research outputs found
Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE
Drainage of central nervous system (CNS) antigens to the brain-draining cervical lymph nodes (CLN) is likely crucial in the initiation and control of autoimmune responses during multiple sclerosis (MS). We demonstrate neuronal antigens within CLN of MS patients. In monkeys and mice with experimental autoimmune encephalomyelitis (EAE) and in mouse models with non-inflammatory CNS damage, the type and extent of CNS damage was associated with the frequencies of CNS antigens within the cervical lymph nodes. In addition, CNS antigens drained to the spinal-cord-draining lumbar lymph nodes. In human MS CLN, neuronal antigens were present in pro-inflammatory antigen-presenting cells (APC), whereas the majority of myelin-containing cells were anti-inflammatory. This may reflect a different origin of the cells or different drainage mechanisms. Indeed, neuronal antigen-containing cells in human CLN did not express the lymph node homing receptor CCR7, whereas myelin antigen-containing cells in situ and in vitro did. Nevertheless, CLN from EAE-affected CCR7-deficient mice contained equal amounts of myelin and neuronal antigens as wild-type mice. We conclude that the type and frequencies of CNS antigens within the CLN are determined by the type and extent of CNS damage. Furthermore, the presence of myelin and neuronal antigens in functionally distinct APC populations within MS CLN suggests that differential immune responses can be evoked
Vascular basement membranes as pathways for the passage of fluid into and out of the brain
In the absence of conventional lymphatics, drainage of interstitial fluid and solutes from the brain parenchyma to cervical lymph nodes is along basement membranes in the walls of cerebral capillaries and tunica media of arteries. Perivascular pathways are also involved in the entry of CSF into the brain by the convective influx/glymphatic system. The objective of this study is to differentiate the cerebral vascular basement membrane pathways by which fluid passes out of the brain from the pathway by which CSF enters the brain. Experiment 1: 0.5 µl of soluble biotinylated or fluorescent Aβ, or 1 µl 15 nm gold nanoparticles was injected into the mouse hippocampus and their distributions determined at 5 min by transmission electron microscopy. Aβ was distributed within the extracellular spaces of the hippocampus and within basement membranes of capillaries and tunica media of arteries. Nanoparticles did not enter capillary basement membranes from the extracellular spaces. Experiment 2: 2 µl of 15 nm nanoparticles were injected into mouse CSF. Within 5min, groups of nanoparticles were present in the pial-glial basement membrane on the outer aspect of cortical arteries between the investing layer of pia mater and the glia limitans. The results of this study and previous research suggest that cerebral vascular basement membranes form the pathways by which fluid passes into and out of the brain but that different basement membrane layers are involved. The significance of these findings for neuroimmunology, Alzheimer's disease, drug delivery to the brain and the concept of the Virchow-Robin space are discussed
Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status
BACKGROUND: Macrophages play a dual role in multiple sclerosis (MS) pathology. They can exert neuroprotective and growth promoting effects but also contribute to tissue damage by production of inflammatory mediators. The effector function of macrophages is determined by the way they are activated. Stimulation of monocyte-derived macrophages in vitro with interferon-γ and lipopolysaccharide results in classically activated (CA/M1) macrophages, and activation with interleukin 4 induces alternatively activated (AA/M2) macrophages. METHODS: For this study, the expression of a panel of typical M1 and M2 markers on human monocyte derived M1 and M2 macrophages was analyzed using flow cytometry. This revealed that CD40 and mannose receptor (MR) were the most distinctive markers for human M1 and M2 macrophages, respectively. Using a panel of M1 and M2 markers we next examined the activation status of macrophages/microglia in MS lesions, normal appearing white matter and healthy control samples. RESULTS: Our data show that M1 markers, including CD40, CD86, CD64 and CD32 were abundantly expressed by microglia in normal appearing white matter and by activated microglia and macrophages throughout active demyelinating MS lesions. M2 markers, such as MR and CD163 were expressed by myelin-laden macrophages in active lesions and perivascular macrophages. Double staining with anti-CD40 and anti-MR revealed that approximately 70% of the CD40-positive macrophages in MS lesions also expressed MR, indicating that the majority of infiltrating macrophages and activated microglial cells display an intermediate activation status. CONCLUSIONS: Our findings show that, although macrophages in active MS lesions predominantly display M1 characteristics, a major subset of macrophages have an intermediate activation status
Herpes-Virus Infection in Patients with Langerhans Cell Histiocytosis: A Case-Controlled Sero-Epidemiological Study, and In Situ Analysis
BACKGROUND: Langerhans cell histiocytosis (LCH) is a rare disease that affects mainly young children, and which features granulomas containing Langerhans-type dendritic cells. The role of several human herpesviruses (HHV) in the pathogenesis of LCH was suggested by numerous reports but remains debated. Epstein-barr virus (EBV, HHV-4), & Cytomegalovirus (CMV, HHV-5) can infect Langerhans cells, and EBV, CMV and HHV-6 have been proposed to be associated with LCH based on the detection of these viruses in clinical samples. METHODOLOGY: We have investigated the prevalence of EBV, CMV and HHV-6 infection, the characters of antibody response and the plasma viral load in a cohort of 83 patients and 236 age-matched controls, and the presence and cellular localization of the viruses in LCH tissue samples from 19 patients. PRINCIPAL FINDINGS: The results show that prevalence, serological titers, and viral load for EBV, CMV and HHV-6 did not differ between patients and controls. EBV was found by PCR in tumoral sample from 3/19 patients, however, EBV small RNAs EBERs -when positive-, were detected by in situ double staining in bystander B CD20+ CD79a+ lymphocytes and not in CD1a+ LC. HHV-6 genome was detected in the biopsies of 5/19 patients with low copy number and viral Ag could not be detected in biopsies. CMV was not detected by PCR in this series. CONCLUSIONS/SIGNIFICANCE: Therefore, our findings do not support the hypothesis of a role of EBV, CMV, or HHV-6 in the pathogenesis of LCH, and indicate that the frequent detection of Epstein-barr virus (EBV) in Langerhans cell histiocytosis is accounted for by the infection of bystander B lymphocytes in LCH granuloma. The latter observation can be attributed to the immunosuppressive micro environment found in LCH granuloma
An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells.
In humans and other mammals it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer's patches, small areas of the intestine concentrated with particle-scavenging immune cells. In wild-type mice, intestinal immune cells containing these naturally formed nanoparticles expressed the immune tolerance-associated molecule 'programmed death-ligand 1', whereas in NOD1/2 double knockout mice, which cannot recognize peptidoglycan, programmed death-ligand 1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and show how this helps to shape intestinal immune homeostasis
- …